Sentential Reasoning and Sentential Connectives:

Conditional, Disjunction, Negation, and Modality

Likan Zhan
Beijing Language and Culture University

zhanlikan@blcu.edu.cn https://likan.info

(Wedgwood, 2006)

• Reasoning is a causal process,

(Wedgwood, 2006)

- Reasoning is a causal process,
- in which one mental event (say, one's accepting the conclusion of a certain argument)

(Wedgwood, 2006)

- Reasoning is a causal process,
- in which one mental event (say, one's accepting the conclusion of a certain argument)
- is caused by an antecedent mental event (say, one's considering the premises of the argument).

(Wedgwood, 2006)

(Khemlani, 2018)

• Major Premise: If the housing market crashes, then the stock market will crash.

(Khemlani, 2018)

- Major Premise: If the housing market crashes, then the stock market will crash.
- Category Premise:
 The housing market crashes.

(Khemlani, 2018)

- Major Premise:
 If the housing market crashes, then the stock market will crash.
- Category Premise:
 The housing market crashes.
- Deduction:
 Therefore, the stock market will crash.

(Khemlani, 2018)

- Major Premise:
 If the housing market crashes, then the stock market will crash.
- Category Premise:
 The housing market crashes.
- Deduction:
 Therefore, the stock market will crash.
- Induction:
 And so, unemployment will rise.

(Khemlani, 2018)

- Major Premise:
 If the housing market crashes, then the stock market will crash.
- Category Premise:
 The housing market crashes.
- Deduction:
 Therefore, the stock market will crash.
- Induction:
 And so, unemployment will rise.
- Abduction:
 And perhaps consumer debt caused the housing market to crash.

(Khemlani, 2018)

- Major Premise:
 If the housing market crashes, then the stock market will crash.
- Category Premise:
 The housing market crashes.
- Deduction:
 Therefore, the stock market will crash.
- Induction:
 And so, unemployment will rise.
- Abduction:
 And perhaps consumer debt caused the housing market to crash.

(Khemlani, 2018)

• Given two atomic propositions:

A, B

• Given two atomic propositions:

A, B

Asserting the conditional statement:

If A, then B

• Given two atomic propositions:

A, B

Asserting the conditional statement:

If A, then B

Implies that:

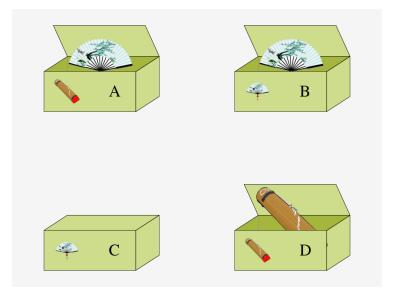
The speaker is not in a position to know the two propositions are true.

(Ramsey, 1929; Russell, 1906)

Possible world and closed box

The Google doodle for Erwin Schrödinger's 126th Birthday On August 12, 2013

• 你首先会看到两个物体,如古筝和扇子。然后会看到一张测试图片。

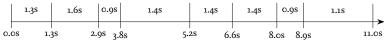

- 你首先会看到两个物体,如古筝和扇子。然后会看到一张测试图片。
- 每张测试图片中都有四个箱子,其中三个是开着的,一个是关着的。当箱子关着的时候,我们不知道里面的物体是什么。但是箱子无论打开与否,里面都装着前述两个物体中的一个,如古筝或扇子。

- 你首先会看到两个物体,如古筝和扇子。然后会看到一张测试图片。
- 每张测试图片中都有四个箱子,其中三个是开着的,一个是关着的。当箱子关着的时候,我们不知道里面的物体是什么。但是箱子无论打开与否,里面都装着前述两个物体中的一个,如古筝或扇子。
- 每个箱子壁上还都贴着一个商标,如古筝或扇子。如果箱子里的物体和箱子壁上的商标一样(如箱子里是古筝,箱子壁上的商标也是古筝),那么箱子里的物体就货真价实,质量就好。得到这个箱子(无论箱子里是什么)的人就会很高兴。

- 你首先会看到两个物体,如古筝和扇子。然后会看到一张测试图片。
- 每张测试图片中都有四个箱子,其中三个是开着的,一个是关着的。当箱子关着的时候,我们不知道里面的物体是什么。但是箱子无论打开与否,里面都装着前述两个物体中的一个,如古筝或扇子。
- 每个箱子壁上还都贴着一个商标,如古筝或扇子。如果箱子里的物体和箱子壁上的商标一样(如箱子里是古筝,箱子壁上的商标也是古筝),那么箱子里的物体就货真价实,质量就好。得到这个箱子(无论箱子里是什么)的人就会很高兴。
- 如果箱子里的物体和箱子璧上的物体不一样(如箱子里是古筝,而箱子璧上的商标是扇子),那么箱子里的物体就是假冒伪劣,质量很差。得到这个箱子(无论箱子里是什么)的人就很伤心。

- 你首先会看到两个物体,如古筝和扇子。然后会看到一张测试图片。
- 每张测试图片中都有四个箱子,其中三个是开着的,一个是关着的。当箱子关着的时候,我们不知道里面的物体是什么。但是箱子无论打开与否,里面都装着前述两个物体中的一个,如古筝或扇子。
- 每个箱子壁上还都贴着一个商标,如古筝或扇子。如果箱子里的物体和箱子壁上的商标一样(如箱子里是古筝,箱子壁上的商标也是古筝),那么箱子里的物体就货真价实,质量就好。得到这个箱子(无论箱子里是什么)的人就会很高兴。
- 如果箱子里的物体和箱子璧上的物体不一样(如箱子里是古筝,而箱子璧上的商标是扇子),那么箱子里的物体就是假冒伪劣,质量很差。得到这个箱子(无论箱子里是什么)的人就很伤心。
- 故事中,有个叫小明的男孩得到了其中一个箱子。小明有时侯已经打开了自己的箱子,有时候还没打开自己的箱子。测试句描述的就是小明拿到的那个特定的箱子。

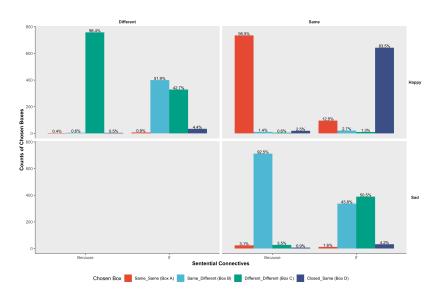
- 你首先会看到两个物体,如古筝和扇子。然后会看到一张测试图片。
- 每张测试图片中都有四个箱子,其中三个是开着的,一个是关着的。当箱子关着的时候,我们不知道里面的物体是什么。但是箱子无论打开与否,里面都装着前述两个物体中的一个,如古筝或扇子。
- 每个箱子壁上还都贴着一个商标,如古筝或扇子。如果箱子里的物体和箱子壁上的商标一样(如箱子里是古筝,箱子壁上的商标也是古筝),那么箱子里的物体就货真价实,质量就好。得到这个箱子(无论箱子里是什么)的人就会很高兴。
- 如果箱子里的物体和箱子璧上的物体不一样(如箱子里是古筝,而箱子璧上的商标是扇子),那么箱子里的物体就是假冒伪劣,质量很差。得到这个箱子(无论箱子里是什么)的人就很伤心。
- 故事中,有个叫小明的男孩得到了其中一个箱子。小明有时侯已经打开了自己的箱子,有时候还没打开自己的箱子。测试句描述的就是小明拿到的那个特定的箱子。
- 你要根据听到的测试句按键选择小明拿到的这个箱子是 A、B、C、D 中的哪个。

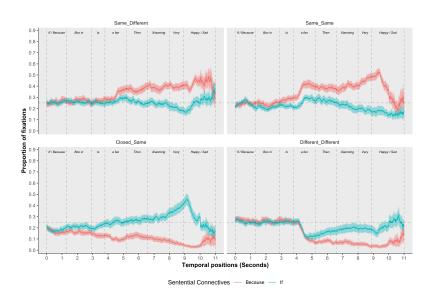


a). Because

因为 箱子甲 是 扇子/古筝 所以 小朋 很 高兴/* 伤心 xiangzi li shi shanzi/guzheng suoyi Xiaoming hen gaoxing/*shangxin vinwei fan/zither therefore Xiaoming very happy/*sad because box in is Because the box contains a fan/zither, therefore Xiaoming is very happy/*sad.

b). **If**


箱子里 是 扇子/古筝 那么 小明 就 高兴/伤心 如果 gaoxing/shangxin xiangzi li shi shanzi/guzheng name Xiaoming jiu Ruguo fan/zither Tf box in is then Xiaoming will happy/sad If the box contains a fan/zither, then Xiaoming will be very happy/sad.



Visual World Paradigm: An eye-tracking technique

(Zhan, 2018b)

• Return to the two atomic propositions:

A, B

Return to the two atomic propositions:

A, B

• The conditional statement:

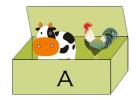
If not-A, then B

Return to the two atomic propositions:

A, B

• The conditional statement:

If not-A, then B

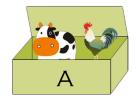

Is logically equivalent to:

A or B

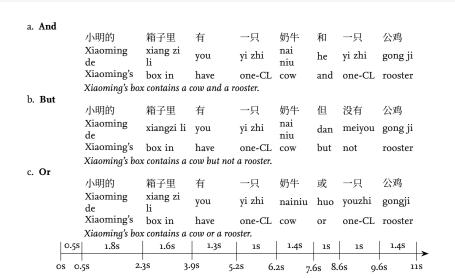
首先你会顺序看到两个动物,如母鸡、狐狸。然后你会看到一个黑点,你要用眼睛盯着这个黑点的同时按一下空格键。

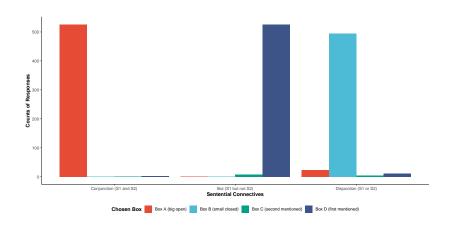
- 首先你会顺序看到两个动物,如母鸡、狐狸。然后你会看到一个黑点,你要用眼睛盯着这个黑点的同时按一下空格键。
- 再然后你会看到四个箱子,有大有小,有开有关。每个大箱子中都装着前面看到的两个动物,并且这两个动物不相同,如母鸡、狐狸;每个小箱子中都装着前面看到的两个动物中的一个,有时是母鸡,有时是狐狸。每个箱子里装着什么动物与其他箱子里装的动物无关。每个箱子里装的动物也与这个箱子是开着还是关着无关。

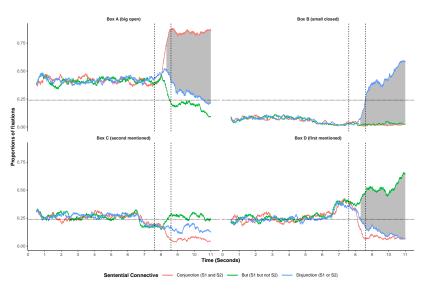
- 首先你会顺序看到两个动物,如母鸡、狐狸。然后你会看到一个黑点,你要用眼睛盯着这个黑点的同时按一下空格键。
- 再然后你会看到四个箱子,有大有小,有开有关。每个大箱子中都装着前面看到的两个动物,并且这两个动物不相同,如母鸡、狐狸;每个小箱子中都装着前面看到的两个动物中的一个,有时是母鸡,有时是狐狸。每个箱子里装着什么动物与其他箱子里装的动物无关。每个箱子里装的动物也与这个箱子是开着还是关着无关。
- 最后你会听到一个测试句。你的任务是根据听到的测试句尽快判断哪个箱子是小明的,并按相应键选择(键盘上用标签标出来的 ABCD 键)。如果有两个或以上选项都合适,请选最合适的一个。如果没选项合适,请随机选一个。



Likan Zhan, 2018-12-16 (Zhan, 2018a, 2018b) 11/16






Likan Zhan, 2018-12-16 (Zhan, 2018a, 2018b) 11/16

(Zhan, 2018a, 2018b)

(Zhan, 2018a, 2018b)

(Zhan, 2018a, 2018b)

Likan Zhan, 2018-12-16

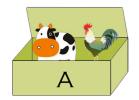
12/16

• Given a set of atomic propositions:

A, B, C, · · ·

• Given a set of atomic propositions:

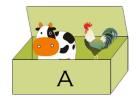
• The negated statement:

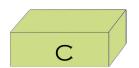

Not A

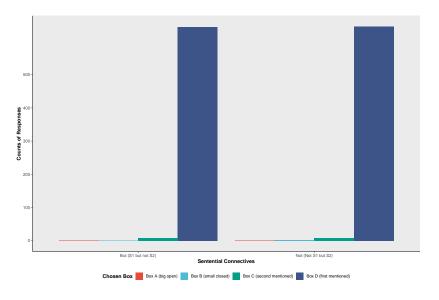
• Given a set of atomic propositions:

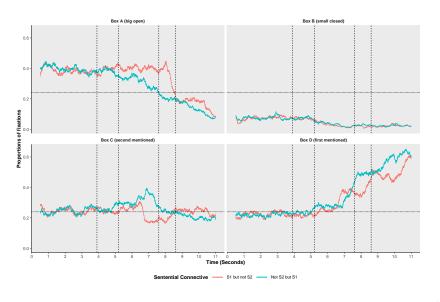
• The negated statement:

Is roughly equivalent to:

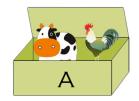

$$B$$
 or C or \cdots







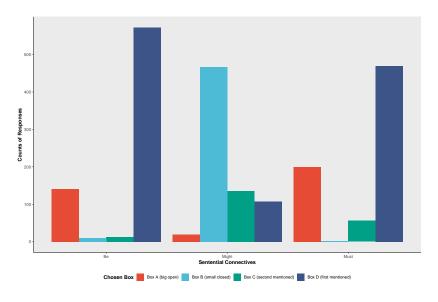
a. But	小明的	箱子里	有	一只	奶牛	但	没有	公鸡			
	Xiaoming de	xiangzi li	you	yi zhi	nai niu	dan	meiyou	•			
	Xiaoming's	box in	have	one-CL	cow	but	not	rooster			
	Xiaoming's box contains a cow but not a rooster.										
b. Not	小明的	箱子里	没有	一只	公鸡	但	有只	奶牛			
	Xiaoming de	xiang zi li	meiyou	yi zhi	gongji	dan	youzhi	nainiu			
	Xiaoming's	box in	not have	one-CL	rooster	but	has-CL	cow			
Xiaoming's box doesn't contain a rooster but a cow.											
	0.58 1.88	1.6s	1.3S	1S	1.4S	1S	1S	1.4S			
c	s 0.5s 2	.3s 3.	9s 5.	 2s 6.	2S 7.	6s 8.	 6s 9.	6s 11s			

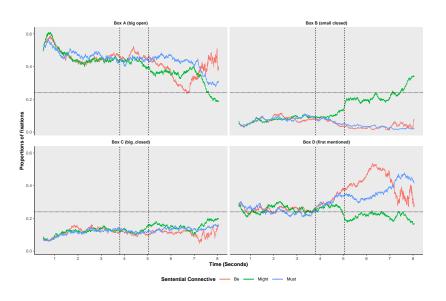


• Conditional, Disjunction, and Negation all involve Modality.

- Conditional, Disjunction, and Negation all involve Modality.
- But, wait, what about the epistemic modals themselves?

Might, Must





a. Be	小明的 Xiaoming de Xiaoming's There might be	箱子里 xiang zi li box in a cow in Xia	oming's box	有一只 youyizhi have one-CL	奶牛 nai niu cow
b. Might	小明的 Xiaoming de Xiaoming's There might be	箱子里 xiang zi li box in a cow in Xia	也许 yexu might oming's box	有一只 youyizhi have one-CL :.	奶牛 nai niu cow
c. Must	小明的 Xiaoming de Xiaoming's There must be a	箱子里 xiang zi li box in cow in Xiao	一定 yiding must ming's box.	有一只 youyizhi have one-CL	奶牛 nai niu cow
Length: 0.58	1.7S	1.6s	1.24s	1.76s	1.25S
Onset: os o	.5S 2.	2S 3.	3s 5.0	04s 6.	8s 8.05s

• Is modality an essential property in reasoning, especially in deductive reasoning?

- Is modality an essential property in reasoning, especially in deductive reasoning?
- Is modality important in language itself?

- Is modality an essential property in reasoning, especially in deductive reasoning?
- Is modality important in language itself?
- What are the neural mechanism underling the modal processes?

- Is modality an essential property in reasoning, especially in deductive reasoning?
- Is modality important in language itself?
- What are the neural mechanism underling the modal processes?
- Can these observations be generalized to other reasoning processes?

The End

References i

- Khemlani, S. S. (2018). Reasoning. In S. Thompson-Schill (Ed.), Stevens' handbook of experimental psychology and cognitive neuroscience (vol 3): Language and thought (chap. 11). Wiley and Sons. doi: 10.1002/9781119170174.epcn311
- Ramsey, F. P. (1929). Law and causality. In D. Mellor (Ed.), Foundations: Essays in philosophy, logic, mathematics and economics(1978) (p. 129-151). London, UK: Routledge and Henley.
- Russell, B. (1906). The theory of implication. *American Journal of Mathematics*, 28(2), 159-202.
- Wedgwood, R. (2006). The normative force of reasoning. Noûs, 40(4), 660-686.
- Zhan, L. (2018a). Scalar and ignorance inferences are both computed immediately upon encountering the sentential connective: The online processing of sentences with disjunction using the visual world paradigm. *Frontiers in Psychology*, 9. doi: 10 .3389/fpsyg.2018.00061
- Zhan, L. (2018b). Using eye movements recorded in the visual world paradigm to explore the online processing of spoken language. *Journal of Visualized Experiments*, 140, e58086. doi: 10.3791/58086