Probability of Implication

ZHAN，Likan
zhanlikan＠blcu．edu．cn
https：／／likan．org
2024－05－22

Beijing Language and Culture University

Table of Contents

1. Psychology as Science for Human Mind
2. Paradoxes of Material Implication
3. Probability of Conditional Statements
4. Complex Conditionals
5. Conditionals as Operators or Quantum Gates?

Table of Contents

1. Psychology as Science for Human Mind

Psychology as Science for Human Mind

Psychology as Science for Human Mind

－Physics
Appropriate model for the external physical world．

Psychology as Science for Human Mind

- Physics

Appropriate model for the external physical world.

- Psychology

Appropriate framework for the internal cognitive world.

Truth－Conditional Semantics

Truth－Conditional Semantics

－A theory of meaning pairs sentences with their truth－conditions． （Heim \＆Kratzer，1998）

Truth－Conditional Semantics

－A theory of meaning pairs sentences with their truth－conditions． （Heim \＆Kratzer，1998）
－Knowing the meaning of a sentence is knowing under which circumstances it is true or false．（Davidson，1967）

Principle of Compositionality

Principle of Compositionality

－The meaning of a complex expression is determined by its structure and the meanings of its constituents．（Szabó，2022）

Principle of Compositionality

- The meaning of a complex expression is determined by its structure and the meanings of its constituents. (Szabó, 2022)
- A truth-functional compound proposition is a proposition whose truth or falsity (that is, truth-value) is a function of the truth or falsity of its component propositions. (Mosley \& Baltazar, 2019)

Sentential Connectives and Logical Operators

Sentential Connectives and Logical Operators

－Apparent parallel between human language and Boolean logic

Name	Language	Boolean logic
Negation	not	\neg
Conjunction	and	\wedge
Disjuntion	or	\vee
Conditional	If．．then	\supset

Sentential Connectives and Logical Operators

－Apparent parallel between human language and Boolean logic

Name	Language	Boolean logic
Negation	not	\neg
Conjunction	and	\wedge
Disjuntion	or	\vee
Conditional	If．．then	\supset

－Denote If A then C as $A>C$

Table of Contents

2. Paradoxes of Material Implication

Material Implication in Boolean Logic

A	C	A $\supset \mathrm{C}$
False	False	True
False	True	True
True	False	False
True	True	True

Paradox of Material Implication

Paradox of Material Implication

- $A \supset C=\neg A \vee C$

Paradox of Material Implication

$$
\begin{gathered}
A \supset C=\neg A \vee C \\
\neg A \Rightarrow A \supset C \\
C \Rightarrow A \supset C
\end{gathered}
$$

Paradox of Material Implication

- $A \supset C=\neg A \vee C$
- $\neg A \Rightarrow A \supset C$
$C \Rightarrow A \supset C$
- $A>C \equiv A \supset C=\neg A \vee C$

Paradox of Material Implication

－$A \supset C=\neg A \vee C$
－$\neg A \Rightarrow A \supset C$
$C \Rightarrow A \supset C$
－$A>C \equiv A \supset C=\neg A \vee C$
－$\neg A \Rightarrow A>C$
If the moon is made of green cheese，then life exists on other planets．

Paradox of Material Implication

－$A \supset C=\neg A \vee C$
－$\neg A \Rightarrow A \supset C$
$C \Rightarrow A \supset C$
－$A>C \equiv A \supset C=\neg A \vee C$
－$\neg A \Rightarrow A>C$
If the moon is made of green cheese，then life exists on other planets．
－$C \Rightarrow A>C$
If life exists on other planets，then life exists on earth．

Table of Contents

3. Probability of Conditional Statements

Probabilites of Material Implication

Probabilites of Material Implication

－Conditionals as Material Implication

$$
A>C \equiv A \supset C
$$

Probabilites of Material Implication

－Conditionals as Material Implication

$$
A>C \equiv A \supset C
$$

－Probabilities of Material Implication

$$
\begin{aligned}
\operatorname{Pr}(A>C) & =\operatorname{Pr}(A \supset C) \\
& =\operatorname{Pr}(A \wedge C)+\operatorname{Pr}(\neg A \wedge C)+\operatorname{Pr}(\neg A \wedge \neg C) \\
& =1-\operatorname{Pr}(A \wedge \neg C)
\end{aligned}
$$

Probabilites of Material Implication

－Conditionals as Material Implication

$$
A>C \equiv A \supset C
$$

－Probabilities of Material Implication

$$
\begin{aligned}
\operatorname{Pr}(A>C) & =\operatorname{Pr}(A \supset C) \\
& =\operatorname{Pr}(A \wedge C)+\operatorname{Pr}(\neg A \wedge C)+\operatorname{Pr}(\neg A \wedge \neg C) \\
& =1-\operatorname{Pr}(A \wedge \neg C)
\end{aligned}
$$

－The sum of thre three probabilities is not the significant predictor of the judged subjective probability of $A>C$ ．（Evans et al．，2003；Oberauer \＆Wilhelm，2003；Over et al．，2007； Singmann et al．，2014）

Probabilities of Conditional Statements

Probabilities of Conditional Statements

－Condiitonal Probability

$$
\operatorname{Pr}(C \mid A)=\frac{\operatorname{Pr}(A \wedge C)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}(A \wedge C)}{\operatorname{Pr}(A \wedge C)+\operatorname{Pr}(A \wedge \neg C)}
$$

Probabilities of Conditional Statements

－Condiitonal Probability

$$
\operatorname{Pr}(C \mid A)=\frac{\operatorname{Pr}(A \wedge C)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}(A \wedge C)}{\operatorname{Pr}(A \wedge C)+\operatorname{Pr}(A \wedge \neg C)}
$$

－Probabilities of Conditionals as Conditional Probability

$$
\operatorname{Pr}(A>C)=\operatorname{Pr}(C \mid A)
$$

Probabilities of Conditional Statements

- Condiitonal Probability

$$
\operatorname{Pr}(C \mid A)=\frac{\operatorname{Pr}(A \wedge C)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}(A \wedge C)}{\operatorname{Pr}(A \wedge C)+\operatorname{Pr}(A \wedge \neg C)}
$$

- Probabilities of Conditionals as Conditional Probability

$$
\operatorname{Pr}(A>C)=\operatorname{Pr}(C \mid A)
$$

- Conditional Probability $\operatorname{Pr}(C \mid A)$ is the significant predictor of the judged subjective probability of A>C. (Evans et al., 2003; Fugard et al., 2011; Girotto \& Johnson-Laird, 2004; Oberauer \& Wilhelm, 2003; Oberauer et al., 2007; Over et al., 2007; Singmann et al., 2014; Skovgaard-Olsen et al., 2016, 2019)

Paradox of Relevance

Paradox of Relevance

$$
\begin{array}{r}
\text { - } A \supset C=\neg A \vee C \\
A \wedge C \Rightarrow A \supset C
\end{array}
$$

Paradox of Relevance

- $A \supset C=\neg A \vee C$
$A \wedge C \Rightarrow A \supset C$
- $A>C \equiv A \supset C=\neg A \vee C$ $A \wedge C \Rightarrow A>C$

Paradox of Relevance

－$A \supset C=\neg A \vee C$
$A \wedge C \Rightarrow A \supset C$
－$A>C \equiv A \supset C=\neg A \vee C$
$A \wedge C \Rightarrow A>C$
－If Napoleon is dead，Oxford is in England．

Default and Penalty Hypothesis

$$
\begin{aligned}
\Delta p_{1} & =[\operatorname{Pr}(A \wedge C)+\operatorname{Pr}(\neg A \wedge \neg C)]-[\operatorname{Pr}(\neg A \wedge C)+\operatorname{Pr}(A \wedge \neg C)] \\
\Delta p_{2} & =\frac{\operatorname{Pr}(C \mid A)-\operatorname{Pr}(C)}{1-\operatorname{Pr}(C)} \\
\Delta p_{3} & =\operatorname{Pr}(C \mid A)-\operatorname{Pr}(C \mid \neg A) \\
\Delta p_{4} & =\frac{\operatorname{Pr}(C \mid A)-\operatorname{Pr}(C \mid \neg A)}{1-\operatorname{Pr}(C \mid \neg A)}=\frac{\operatorname{Pr}(C \mid A)-\operatorname{Pr}(C)}{\operatorname{Pr}(\neg A \wedge \neg C)}
\end{aligned}
$$

Results are Mixed

Results are Mixed

- Positive evidence (Krzy anowska et al., 2017; Skovgaard-Olsen et al., 2016, 2019)
－Positive evidence
（Krzy anowska et al．，2017；Skovgaard－Olsen et al．，2016，2019）
－Negative evidence
（Oberauer et al．，2007；Over et al．，2007；Singmann et al．，2014）
－Positive evidence （Krzy anowska et al．，2017；Skovgaard－Olsen et al．，2016，2019）
－Negative evidence （Oberauer et al．，2007；Over et al．，2007；Singmann et al．，2014）
－Our results suggest that the positive results are confounded by other factors．（Zhan \＆Wang，In Preparation）

Table of Contents
4. Complex Conditionals

Embeddings of conditionals

Embeddings of conditionals

－Negated conditionals：$\neg(A>C)$

Embeddings of conditionals

－Negated conditionals：$\neg(A>C)$
－Disjunctions of conditionals：$(A>B) \vee(C>D)$

Embeddings of conditionals

－Negated conditionals：$\neg(A>C)$
－Disjunctions of conditionals：$(A>B) \vee(C>D)$
－Left－nested conditionals：$(A>B)>C$

Embeddings of conditionals

－Negated conditionals：$\neg(A>C)$
－Disjunctions of conditionals：$(A>B) \vee(C>D)$
－Left－nested conditionals：$(A>B)>C$
－Right－nested conditionals：$A>(B>C)$

Stalnaker's Hypothesis and Factorization Hypothesis

Stalnaker's Hypothesis and Factorization Hypothesis

- Stalnaker's Hypothesis (Stalnaker, 1970): For every probability function Pr and for every conditional $A>C$, possibly complex:

$$
\operatorname{Pr}(A>C)=\operatorname{Pr}(C \mid A)
$$

provided that $\operatorname{Pr}(A)>0$.

Stalnaker＇s Hypothesis and Factorization Hypothesis

－Stalnaker＇s Hypothesis（Stalnaker，1970）：For every probability function $P r$ and for every conditional $A>C$ ，possibly complex：

$$
\operatorname{Pr}(A>C)=\operatorname{Pr}(C \mid A)
$$

provided that $\operatorname{Pr}(A)>0$ ．
－Factorization Hypothesis（Fitelson，2015）：For every probability function $P r$ and for all sentences A and B such that

$$
\operatorname{Pr}(A \wedge B)>0
$$

$$
\operatorname{Pr}(B>C \mid A)=\operatorname{Pr}(C \mid A \wedge B)
$$

Stalnaker's Hypothesis and Factorization Hypothesis

- Stalnaker's Hypothesis (Stalnaker, 1970): For every probability function Pr and for every conditional $A>C$, possibly complex:

$$
\operatorname{Pr}(A>C)=\operatorname{Pr}(C \mid A)
$$

provided that $\operatorname{Pr}(A)>0$.

- Factorization Hypothesis (Fitelson, 2015): For every probability function Pr and for all sentences A and B such that
$\operatorname{Pr}(A \wedge B)>0$,

$$
\operatorname{Pr}(B>C \mid A)=\operatorname{Pr}(C \mid A \wedge B)
$$

- Import-Export Principle: $A \supset(B \supset C) \equiv(A \wedge B) \supset C$

$$
\operatorname{Pr}(A>(B>C))=\operatorname{Pr}(B>C \mid A)=\operatorname{Pr}(C \mid A \wedge B)
$$

－Triviality Theorem（Lewis，1976）：If A is probabilistically compatible with both C and $\neg C$ ，that is，if $\operatorname{Pr}(A \wedge C)>0$ and $\operatorname{Pr}(A \wedge \neg C)>0$ ，then $\operatorname{Pr}(A>C)=\operatorname{Pr}(C)$ ．

- Triviality Theorem (Lewis, 1976): If A is probabilistically compatible with both C and $\neg C$, that is, if $\operatorname{Pr}(A \wedge C)>0$ and $\operatorname{Pr}(A \wedge \neg C)>0$, then $\operatorname{Pr}(A>C)=\operatorname{Pr}(C)$.
- Proof

$$
\begin{aligned}
\operatorname{Pr}(A>C \mid C) & =\operatorname{Pr}(C \mid A \wedge C)=1 \\
\operatorname{Pr}(A>C \mid \neg C) & =\operatorname{Pr}(C \mid A \wedge \neg C)=0 \\
\operatorname{Pr}(A>C) & =\operatorname{Pr}(A>C \mid C) \operatorname{Pr}(C)+\operatorname{Pr}(A>C \mid \neg C) \operatorname{Pr}(\neg C) \\
& =1 \cdot \operatorname{Pr}(C)+0 \cdot \operatorname{Pr}(\neg C) \\
& =\operatorname{Pr}(C)
\end{aligned}
$$

Table of Contents

5. Conditionals as Operators or Quantum Gates?

Hypothetical Properties of Conditionals

Hypothetical Properties of Conditionals

－The apple is green versus If the apple is green．

Hypothetical Properties of Conditionals

－The apple is green versus If the apple is green．
－$A, C, A \wedge C$ versus $A>C$ ．（Zhan et al．，2015，2018；Zhan \＆Zhou， 2023）

Hypothetical Properties of Conditionals

－The apple is green versus If the apple is green．
－$A, C, A \wedge C$ versus $A>C$ ．（Zhan et al．，2015，2018；Zhan \＆Zhou， 2023）
－$A, C, A \wedge C$ versus $A \vee C$ ．（Zhan，2018）

Go Back to the Paradoxes

Go Back to the Paradoxes

－If the moon is made of green cheese，then life exists on other planets．

Go Back to the Paradoxes

－If the moon is made of green cheese，then life exists on other planets．
－If life exists on other planets，then life exists on earth．

Go Back to the Paradoxes

－If the moon is made of green cheese，then life exists on other planets．
－Iflife exists on other planets，then life exists on earth．
－If Napoleon is dead，Oxford is in England．

Conditionals as Operators or Gates

Conditionals as Operators or Gates

－The effect of conditional $A>C$ happens before measurement which does not make the superposition of states to collapse．

Conditionals as Operators or Gates

－The effect of conditional $A>C$ happens before measurement which does not make the superposition of states to collapse．
－The conditional $A>C$ should be regarded as an intact unit．

Conditionals as Controled－NOT Gate？

Conditionals as Controled－NOT Gate？

－Material Implication

A	C	$\mathrm{A} \supset \mathrm{C}$
False	False	True
False	True	True
True	False	False
True	True	True

Conditionals as Controled－NOT Gate？

－Material Implication

A	C	$A \supset C$
False	False	True
False	True	True
True	False	False
True	True	True

－Controled－NOT Gate
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Thank you for your attention !

References

Davidson, D. (1967). Truth and meaning. Synthese, 17(1), 304-323. doi:
10.1007/bfoo485035

Evans, J. S., Handley, S. J., \& Over, D. E. (2003). Conditionals and conditional probability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 321-335. doi: 10.1037/0278-7393.29.2.321
Fitelson, B. (2015). The strongest possible lewisian triviality result. Thought: A Journal of Philosophy, 4(2), 69-74. doi: 10.1002/tht3.159
Fugard, A. J., Pfeifer, N., Mayerhofer, B., \& Kleiter, G. D. (2011). How people interpret conditionals: Shifts toward the conditional event. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(3), 635-648. doi: 10.1037/a0022329

Girotto, V., \& Johnson-Laird, P. N. (2004). The probability of conditionals.
Psychologia, 47(4), 207-225. doi: 10.2117/psysoc.2004.207
Heim, I., \& Kratzer, A. (1998). Semantics in generative grammar. Blackwell.

References

Krzy anowska, K., Collins, P. J., \& Hahn, U. (2017). Between a conditional's antecedent and its consequent: Discourse coherence vs. probabilistic relevance. Cognition, 164, 199-205. doi: 10.1016/j.cognition.2017.03.009
Lewis, D. (1976). Probabilities of conditionals and conditional probabilities. The Philosophical Review, 85(3), 297-315.
Mosley, A., \& Baltazar, E. (2019). An introduction to logic: From everyday life to formal systems. Open Educational Resources. Retrieved from https://scholarworks.smith.edu/textbooks/1/
Oberauer, K., Weidenfeld, A., \& Fischer, K. (2007). What makes us believe a conditional? the roles of covariation and causality. Thinking \& Reasoning, 13(4), 340-369. doi: 10.1080/13546780601035794
Oberauer, K., \& Wilhelm, O. (2003). The meaning(s) of conditionals: Conditional probabilities, mental models, and personal utilities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(4), 680-693. doi: 10.1037/0278-7393.29.4.680

Linnaeus University, 2024-05-22

References

Over, D. E., Hadjichristidis, C., Evans, J. S., Handley, S. J., \& Sloman, S. A. (2007). The probability of causal conditionals. Cognitive Psychology, 54(1), 62-97. doi: 10.1016/j.cogpsych.2006.05.002

Singmann, H., Klauer, K. C., \& Over, D. (2014). New normative standards of conditional reasoning and the dual-source model. Frontiers in Psychology, 5, 316. doi: 10.3389/fpsyg.2014.00316

Skovgaard-Olsen, N., Kellen, D., Hahn, U., \& Klauer, K. C. (2019). Norm conflicts and conditionals. Psychological Review, 126(5), 611-633. doi:
10.1037/revooool50

Skovgaard-Olsen, N., Singmann, H., \& Klauer, K. C. (2016). The relevance effect and conditionals. Cognition, 150, 26-36. doi: 10.1016/j.cognition.2015.12.017
Stalnaker, R. C. (1970). Probability and conditionals. Philosophy of Science, 37(1), 64-80.
Szabó, Z. G. (2022). Compositionality. In E. N. Zalta \& U. Nodelman (Eds.), The stanford encyclopedia of philosophy.

Linnaeus University, 2024-05-22

References

Zhan, L. (2018). Scalar and ignorance inferences are both computed immediately upon encountering the sentential connective: The online processing of sentences with disjunction using the visual world paradigm. Frontiers in Psychology, 9, 61. doi: 10.3389/fpsyg.2018.00061
Zhan, L., Crain, S., \& Zhou, P. (2015). The online processing of only if and even if conditional statements: Implications for mental models. Journal of Cognitive Psychology, 27(3), 367-379. doi: 10.1080/20445911.2015.1016527
Zhan, L., \& Wang, M. (In Preparation). Probabilities of conditionals: Relevance effect might be confounded by the existence of zero-frequency subset(s).
Zhan, L., \& Zhou, P. (2023). The online processing of hypothetical events. Experimental Psychology, 70(2), 108-117. doi: 10.1027/1618-3169/a000579
Zhan, L., Zhou, P., \& Crain, S. (2018). Using the visual-world paradigm to explore the meaning of conditionals in natural language. Language, Cognition and Neuroscience, 33(8), 1049-1062. doi: 10.1080/23273798.2018.1448935

