

Confirming cognitive contextuality

Violation of the Leggett-Garg inequality and demonstration of cognitive hysteresis in perceiving cup-like objects

Likan Zhan^{1,2}, Andrei Khrennikov², & Yingce Zhu¹ Sydostkonferensen, 2024-08-20

¹ Beijing Language and Culture University, ² Linnaeus University

Table of Contents

- 1. Contextuality and incompatibility
- 2. Using cyclic systems to test contextuality
- 3. Current study
- 4. Experiment one
- 5. Experiment two
- 6. Discussion

Table of Contents

Contextuality and incompatibility
 Using cyclic systems to test contextualit
 Current study
 Experiment one
 Experiment two
 Discussion

Contextuality

ktift 🔞

Contextuality

• The values of an observable are not the objective properties of the systems.

Contextuality

- The values of an observable are not the objective properties of the systems.
- They are created in the process of the complex interaction between the systems prepared for measurements and the apparatus used for measurement.

Contextuality

- The values of an observable are not the objective properties of the systems.
- They are created in the process of the complex interaction between the systems prepared for measurements and the apparatus used for measurement.
- An outcome of any observable is composed of the contributions of a system and a measurement device.

• The whole experimental context has to be taken into account.

- The whole experimental context has to be taken into account.
- There is no reason to expect that all experimental contexts can be combined with each other and all observables can be measured jointly; Thus, some observables can be incompatible.

- The whole experimental context has to be taken into account.
- There is no reason to expect that all experimental contexts can be combined with each other and all observables can be measured jointly; Thus, some observables can be incompatible.
- The Heisenberg uncertainty principle implies that the position and momentum observables are incompatible.

Joint measurement contextuality

(Kujala & Dzhafarov, 2016)

Joint measurement contextuality

 Contextuality means that random variables recorded under mutually incompatible conditions cannot be join together into a single system of jointly distributed random variables,

(Kujala & Dzhafarov, 2016)

Joint measurement contextuality

- Contextuality means that random variables recorded under mutually incompatible conditions cannot be join together into a single system of jointly distributed random variables,
 - provided one assumes that their identity across different conditions changes as little as possibly allowed by direct cross-influences (equivalently, by observed deviations from marginal selectivity).

(Kujala & Dzhafarov, 2016)

Table of Contents

- 1. Contextuality and incompatibility
- 2. Using cyclic systems to test contextuality

Current study
 Experiment one
 Experiment two
 Discussion

Cyclic systems, conteXts and conteNts

Cyclic systems, conteXts and conteNts

• Cyclic systems have played a prominent role in contextuality studies (Araújo et al., 2013; Dzhafarov & Kujala, 2016).

Cyclic systems, conteXts and conteNts

- Cyclic systems have played a prominent role in contextuality studies (Araújo et al., 2013; Dzhafarov & Kujala, 2016).
- The c-c matrix for a cyclic system of an arbitrary rank n

R_1^1	R_2^1	•	•		•).	C^1
•	R_2^2	R_3^2	a.		•	·	C^2
7	•	R_3^3	R_4^3		•	•	C^3
1:	4		:	·	:	:	
<u>.</u>	•				R_{n-1}^{n-1}	R_n^{n-1}	C^{n-1}
R_1^n	•	•	•		•	R_n^n	C^n
Q_1	Q_2	<i>Q</i> ₃	Q_4		Q_{n-1}	Qn	\mathscr{R}_n
					(Dz	hafarov	& Kujala, 2016)

北京语言大发

• The c-c matrix for a cyclic system of rank 5

R_1^1	R_2^1	•	•	•	C^1
•	R_{2}^{2}	R_3^2	•	2	C^2
•	•	R_3^3	R_4^3	•	C^3
•	19.0	•	R_4^4	R_5^4	C^4
R_{1}^{5}		•	•	R_{5}^{5}	<i>C</i> ⁵
Q_1	Q_2	Q_3	Q_4	Q_5	\mathscr{R}_5

• The c-c matrix for a cyclic system of rank 5

R_1^1	R_2^1	•		•	C^1
•	R_{2}^{2}	R_3^2	Ċ	2	C^2
•	•	R_3^3	R_4^3	•	C^3
•	1	•	R_4^4	R_5^4	C^4
R_{1}^{5}		•	•	R_{5}^{5}	<i>C</i> ⁵
Q_1	Q_2	Q_3	Q_4	Q_5	\mathscr{R}_5

• Klyachko-Can-Binicioglu-Shumovsky experiment (Klyachko et al., 2008; Lapkiewicz et al., 2011).

• The c-c matrix for a cyclic system of rank 4

R_1^1	R_2^1	•		C^1
•	R_2^2	R_{3}^{2}		C^2
•	•	R_3^3	R_4^3	C^3
R_1^1		•	R_4^3	C^4
Q_1	Q_2	Q_3	Q_4	\mathscr{R}_4

• The c-c matrix for a cyclic system of rank 4

R_1^1	R_2^1	•		C^1
•	R_{2}^{2}	R_{3}^{2}	/	C^2
•	·	R_{3}^{3}	R_4^3	C^3
R_1^1	-	•	R_4^3	C^4
Q_1	Q_2	Q_3	Q_4	\mathscr{R}_4

• Bell's "Alice-Bob" experiments (Bell, 1964, 1966; Clauser et al., 1969; Fine, 1982).

• The c-c matrix for a cyclic system of rank 3

R_1^1	R_2^1		C^1
•	R_{2}^{2}	R_{3}^{2}	C^2
R_1^3	ŀ	R_{3}^{3}	C^3
<i>Q</i> ₁	Q_2	Q_3	\mathscr{R}_3

• The c-c matrix for a cyclic system of rank 3

R_1^1	R_2^1		C^1
•	R_{2}^{2}	R_{3}^{2}	C^2
R_1^3	·	R_{3}^{3}	C^3
Q_1	Q_2	Q_3	\mathscr{R}_3

 Leggett-Garg experiments (Suppes & Zanotti, 1981; Leggett & Garg, 1985; Kofler & Brukner, 2013; Asano et al., 2014; Bacciagaluppi, 2014)

★大言葉京北 ()

• The c-c matrix for a cyclic system of rank 2

R_1^1	R_2^1	C^1
R_1^2	R_{2}^{2}	C^2
Q_1	Q_2	\mathscr{R}_2

• The c-c matrix for a cyclic system of rank 2

R_1^1	R_2^1	C^1
R_1^2	R_{2}^{2}	C^2
Q_1	Q_2	\mathscr{R}_2

• Question-order effects in decision making (Wang et al., 2014; Busemeyer & Wang, 2018; Huang et al., 2024)

Table of Contents

- 1. Contextuality and incompatibility
- 2. Using cyclic systems to test contextuality
- 3. Current study
- Experiment one
 Experiment two
 Discussion

Experimental design

Experimental design

• Let R_i^i be an observable quantity that takes either +1 or -1.

Experimental design

- Let R_i^i be an observable quantity that takes either +1 or -1.
- Our experiments are rank-3 like systems

R_1^1	 R_i^1	 R_{176}^1	C^1
R_1^2	 R_i^2	 R_{176}^2	C^2
R_1^3	 R_i^3	 R_{176}^3	C^3
<i>Q</i> ₁	 Qi	 Q ₁₇₆	\mathcal{R}_3
$w_1 = .50$	 $w_i = .50+$.02 * (i - 1)	 $w_{176} = 4.0$	

• Given any i < j < k, we can obtain a cyclic system of rank 3

R_i^1	R_j^1	R_k^1	C^1
R_i^2	R_j^2	R_k^2	C^2
R_i^3	R_j^3	R_k^3	C^3
Qi	Q_j	Q_k	\mathscr{R}_3
wi	w _i	wk	i < j < k

• Given any i < j < k, we can obtain a cyclic system of rank 3

R_i^1	R_j^1	R_k^1	C^1
R_i^2	R_j^2	R_k^2	C^2
R_i^3	R_j^3	R_k^3	C^3
Qi	Q_j	Q_k	\mathscr{R}_3
wi	wj	wk	i < j < k

• The three variables in the same context are jointly distributed: $P^{c}(R_{i}^{c}, R_{j}^{c}, R_{k}^{c})$ for $c \in \{C^{1}, C^{2}, C^{3}\}$

• For these jointly distributed variables, the marginal consistency holds.

- For these jointly distributed variables, the marginal consistency holds.
- So we have

$$P^{c}(R_{i}^{c}, R_{j}^{c}) = \sum_{R_{k}^{c}=\pm 1} P^{c}(R_{i}^{c}, R_{j}^{c}, R_{k}^{c})$$
(1)

- · 秋文百乐北 🛞
- For these jointly distributed variables, the marginal consistency holds.
- So we have

$$P^{c}(R_{i}^{c}, R_{j}^{c}) = \sum_{R_{k}^{c} = \pm 1} P^{c}(R_{i}^{c}, R_{j}^{c}, R_{k}^{c})$$
(1)

• We also have

$$P^{c}(R_{i}^{c}) = \sum_{R_{j}^{c}=\pm 1} P^{c}(R_{i}^{c}, R_{j}^{c}) = \sum_{R_{k}^{c}=\pm 1} P^{c}(R_{i}^{c}, R_{k}^{c})$$
(2)

- · 秋本注意宗注 🛞
- For these jointly distributed variables, the marginal consistency holds.
- So we have

$$P^{c}(R_{i}^{c}, R_{j}^{c}) = \sum_{R_{k}^{c} = \pm 1} P^{c}(R_{i}^{c}, R_{j}^{c}, R_{k}^{c})$$
(1)

• We also have

$$P^{c}(R_{i}^{c}) = \sum_{R_{j}^{c}=\pm 1} P^{c}(R_{i}^{c}, R_{j}^{c}) = \sum_{R_{k}^{c}=\pm 1} P^{c}(R_{i}^{c}, R_{k}^{c})$$
(2)

· Finally, we have

$$1 = \sum_{R_i^c = \pm 1} P^c(R_i^c)$$
(3)

• If they are jointly distributed, the correlation functions between two random variables R_i^c and R_j^c are

$$C_{ij}^{c} = P^{c}(R_{i}^{c} = 1, R_{j}^{c} = 1) + P^{c}(R_{i}^{c} = -1, R_{j}^{c} = -1) - P^{c}(R_{i}^{c} = 1, R_{j}^{c} = -1) - P^{c}(R_{i}^{c} = 1, R_{j}^{c} = -1) = 2[P^{c}(R_{i}^{c} = 1, R_{i}^{c} = 1) + P^{c}(R_{i}^{c} = -1, R_{i}^{c} = -1)] - 1$$
(4)

Leggett–Garg inequality

 $= -1, R_i^c = -1, R_k^c = 1) + P(R_i^c = -1, R_i^c = -1, R_k^c = -1)] - 1\} +$ $= -1, R_k^c = -1, R_i^c = 1) + P(R_i^c = -1, R_k^c = -1, R_i^c = -1)] - 1 - 1$ $= -1, R_{k}^{c} = -1, R_{i}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{i}^{c} = -1)] - 1\}$ $= -1, R_i^c = -1, R_k^c = 1) + P(R_i^c = -1, R_i^c = -1, R_k^c = -1)] - 1\} +$ $= 1, R_i^c = -1, R_k^c = -1) + P(R_i^c = -1, R_i^c = -1, R_k^c = -1)] - 1 - 1$ $= -1, R_{i}^{c} = 1, R_{k}^{c} = -1) + P(R_{i}^{c} = -1, R_{i}^{c} = -1, R_{k}^{c} = -1)] - 1\}$

$$\begin{split} &K = C_{ij}^{c} + C_{jk}^{c} - C_{ik}^{c} \\ &= \{2[P(R_{i}^{c} = 1, R_{j}^{c} = 1) + P(R_{i}^{c} = -1, R_{j}^{c} = -1)] - 1\} + \{2[P(R_{j}^{c} = 1, R_{k}^{c} = 1) + P(R_{j}^{c} = -1, R_{k}^{c} = -1)] - 1\} \\ &= \{2[P(R_{i}^{c} = 1, R_{j}^{c} = 1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{j}^{c} = -1)] - 1\} \\ &= \{2[P(R_{i}^{c} = 1, R_{j}^{c} = 1, R_{k}^{c} = 1) + P(R_{i}^{c} = 1, R_{j}^{c} = 1, R_{k}^{c} = -1) + P(R_{i}^{c} = -1, R_{j}^{c} = -1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = -1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = 1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = -1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{j}^{c} = -1, R_{k}^{c} = -1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1, R_{k}^{c} = -1) + P(R_{i}^{c} = -1, R_{k}^{c} = -1) + P(R_{i}^{c}$$

 $R_i^c = -1, R_i^c = -1, R_k^c = 1) + 2P(R_i^c = -1, R_i^c = -1, R_k^c = -1) - 1\} +$ $\{2P(R_i^c=1,R_i^c=1,R_k^c=1)+2P(R_i^c=-1,R_k^c=1)+2P(R_i^c=1,R_k^c=1)+2P(R_i^c=-1,R_k^c=-1)+2P(R_i^c=-1,R_k^c=-1)-1\}-2P(R_i^c=1,R_k^c=1)-1\}-2P(R_i^c=1,R_k^c=1)+2P(R_i^c=1)+2P(R$ $\{2P(R_i^c=1,R_i^c=1,R_k^c=1)+2P(R_i^c=1,R_k^c=-1,R_k^c=1)+2P(R_i^c=-1,R_k^c=-1)+2P(R_i^c=-1,R_k^c=-1)+2P(R_i^c=-1,R_k^c=-1)-1\}$ $= \{ 2P(R_i^c = 1, R_j^c = 1, R_k^c = 1) + 2P(R_i^c = 1, R_k^c = -1) + 2P(R_i^c = -1, R_i^c = -1, R_k^c = 1) + 2P(R_i^c = -1, R_k^c = -1) + 2P(R_i^c = -1) + 2P(R_$

$$\{2P(R_1^c = -1, R_2^c = 1, R_k^c = 1) + 2P(R_1^c = 1, R_2^c = -1, R_k^c = -1)\} - \{2P(R_1^c = 1, R_2^c = -1, R_k^c = 1) + 2P(R_1^c = -1, R_k^c = -1)\}$$

= + 2P(R_1^c = 1, R_2^c = 1, R_2^c = 1) + 2P(R_2^c = -1, R_2^c = -1) + 2P(R_1^c = -1, R_2^c = -1) + 2P(R_1^c = -1, R_2^c = -1)\}

$$+2P(R_{i}^{c}=-1,R_{j}^{c}=1,R_{k}^{c}=1)+2P(R_{i}^{c}=1,R_{j}^{c}=-1,R_{k}^{c}=-1)-2P(R_{i}^{c}=1,R_{j}^{c}=-1,R_{k}^{c}=1)-2P(R_{i}^{c}=1,R_{j}^{c}=-1,R_{k}^{c}=1)-2P(R_{i}^{c}=1,R_{k}^{c}=1)-1)=1$$

$$=1-4\{P(R_i^c=1,R_j^c=-1,R_k^c=1)+P(R_i^c=-1,R_j^c=1,R_k^c=-1)\}$$

• If there is no contextuality, i.e., random variables do not depend on experimental contexts, the three variables $(R_i^{c1}, R_j^{c2}, R_k^{c3})$ from different contexts could still be jointly distributed.

R_i^1	R_j^1		C^1
•	R_j^2	R_k^2	C^2
R_i^3	•	R_k^3	C^3
Qi	Q_j	Q_k	\mathscr{R}_3
wi	wj	wk	i < j < k

• If there is no contextuality, i.e., random variables do not depend on experimental contexts, the three variables $(R_i^{c1}, R_j^{c2}, R_k^{c3})$ from different contexts could still be jointly distributed.

R_i^1	R_j^1		C^1
•	R_j^2	R_k^2	C^2
R_i^3	•	R_k^3	C^3
Qi	Q_j	Q_k	\mathscr{R}_3
wi	wj	wk	i < j < k
	1		

The Leggett–Garg inequality should still hold:

$$K = C_{ij}^{c1} + C_{jk}^{c2} - C_{ik}^{c3} \le 1$$

(5)

• If there is no contextuality, i.e., random variables do not depend on experimental contexts, the three variables $(R_i^{c1}, R_j^{c2}, R_k^{c3})$ from different contexts could still be jointly distributed.

R_i^1	R_j^1		C^1
•	R_j^2	R_k^2	C^2
R_i^3	•	R_k^3	C^3
Qi	Q_j	Q_k	\mathscr{R}_3
wi	wj	wk	i < j < k

• The Leggett–Garg inequality should still hold:

$$K = C_{ij}^{c1} + C_{jk}^{c2} - C_{ik}^{c3} \le 1$$

• If Leggett–Garg inequality is violated, then the joint measurement contextuality occurs.

(5)

Table of Contents

- 1. Contextuality and incompatibility
- 2. Using cyclic systems to test contextuality
- 3. Current study
- 4. Experiment one
- 5. Experiment two 6. Discussion

• The social context was kept "neutral": Participants are simply asked to judge whether the object is a "cup" or not.

- The social context was kept "neutral": Participants are simply asked to judge whether the object is a "cup" or not.
- C¹: Decrease order

- The social context was kept "neutral": Participants are simply asked to judge whether the object is a "cup" or not.
- C¹: Decrease order
- C²: Increase order

- The social context was kept "neutral": Participants are simply asked to judge whether the object is a "cup" or not.
- C¹: Decrease order
- C²: Increase order
- C³: Random order

Descriptive results

Statistical analyses

Table of Contents

- 1. Contextuality and incompatibility
- 2. Using cyclic systems to test contextuality
- 3. Current study
- 4. Experiment one
- 5. Experiment two
- 6. Discussion

• The physical context was kept fixed: Participants are presented the test stimuli in a pseudo-random order and are asked to imagine that they are in the social context given and are asked to judge whether the object is a cup or not.

- The physical context was kept fixed: Participants are presented the test stimuli in a pseudo-random order and are asked to imagine that they are in the social context given and are asked to judge whether the object is a cup or not.
- C¹: coffee context, participants are asked to imagine in each case that they saw someone with the object in his hand, stirring in sugar with a spoon, and drinking coffee from it;

- The physical context was kept fixed: Participants are presented the test stimuli in a pseudo-random order and are asked to imagine that they are in the social context given and are asked to judge whether the object is a cup or not.
- C¹: coffee context, participants are asked to imagine in each case that they saw someone with the object in his hand, stirring in sugar with a spoon, and drinking coffee from it;
- *C*²: food context, participants are asked to imagine that they came to dinner at someone's house and saw this object sitting on the dinner table, filled with rice;

- The physical context was kept fixed: Participants are presented the test stimuli in a pseudo-random order and are asked to imagine that they are in the social context given and are asked to judge whether the object is a cup or not.
- C¹: coffee context, participants are asked to imagine in each case that they saw someone with the object in his hand, stirring in sugar with a spoon, and drinking coffee from it;
- C²: food context, participants are asked to imagine that they came to dinner at someone's house and saw this object sitting on the dinner table, filled with rice;
- C³: flower context, participants are asked to conceive of each of these objects standing on a shelf, each with cut flowers in it.

Descriptive results

Statistical analyses

Table of Contents

- 1. Contextuality and incompatibility
- 2. Using cyclic systems to test contextuality
- 3. Current study
- 4. Experiment one
- 5. Experiment two
- 6. Discussion

Problems to be resolved

Problems to be resolved

Signaling
Problems to be resolved

- Signaling
- To compare different formalization

Thanks!

Araújo, M., Quintino, M. T., Budroni, C., Cunha, M. T., & Cabello, A. (2013). All noncontextuality inequalities for the n-cycle scenario. *Physical Review A*, 88(2). doi: 10.1103/PhysRevA.88.022118

- Asano, M., Hashimoto, T., Khrennikov, A., Ohya, M., & Tanaka, Y. (2014). Violation of contextual generalization of the leggett–garg inequality for recognition of ambiguous figures. *Physica Scripta*, *T*163. doi: 10.1088/0031-8949/2014/t163/014006
- Bacciagaluppi, G. (2014). Leggett-garg inequalities, pilot waves and contextuality. International Journal of Quantum Foundations, 1(1), 1-17.
- Bell, J. S. (1964). On the einstein podolsky rosen paradox. *Physics Physique Fizika*, 1(3), 195-200. doi: 10.1103/PhysicsPhysiqueFizika.1.195
- Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38(3), 447-452. doi: 10.1103/RevModPhys.38.447
- Busemeyer, J. R., & Wang, Z. (2018). Hilbert space multidimensional theory. Psychological Review, 125(4), 572-591. doi: 10.1037/rev0000106

- Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. *Physical Review Letters*, 23(15), 880-884. doi: 10.1103/PhysRevLett.23.880
- Dzhafarov, E. N., & Kujala, J. V. (2016). Context-content systems of random variables: The contextuality-by-default theory. *Journal of Mathematical Psychology*, *74*, 11-33. doi: 10.1016/j.jmp.2016.04.010
- Fine, A. (1982). Joint distributions, quantum correlations, and commuting observables. *Journal of Mathematical Physics*, 23(7), 1306-1310. doi: 10.1063/1.525514
- Huang, J., Busemeyer, J. R., Ebelt, Z., & Pothos, E. M. (2024). Bridging the gap between subjective probability and probability judgments: The quantum sequential sampler. *Psychological Review*.
- Khrennikov, A. (2022). Contextuality, complementarity, signaling, and bell tests. Entropy, 24(10). doi: 10.3390/e24101380

Klyachko, A. A., Can, M. A., Binicioglu, S., & Shumovsky, A. S. (2008). Simple test for hidden variables in spin-1 systems. *Phys Rev Lett*, 101(2), 020403. doi: 10.1103/PhysRevLett.101.020403

Kofler, J., & Brukner, . (2013). Condition for macroscopic realism beyond the leggett-garg inequalities. *Physical Review A*, 87(5). doi: 10.1103/PhysRevA.87.052115

- Kujala, J. V., & Dzhafarov, E. N. (2016). Probabilistic contextuality in epr/bohm-type systems with signaling allowed. In E. Dzhafarov, S. Jordan, R. Zhang, & V. Cervantes (Eds.), Contextuality from quantum physics to psychology. World Scientific. doi: 10.1142/9855
- Lapkiewicz, R., Li, P., Schaeff, C., Langford, N. K., Ramelow, S., Wiesniak, M., & Zeilinger, A. (2011). Experimental non-classicality of an indivisible quantum system. *Nature*, 474(7352), 490-3. doi: 10.1038/nature10119

- Leggett, A. J., & Garg, A. (1985). Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? *Physical Review Letters*, 54(9), 857-860. doi: 10.1103/PhysRevLett.54.857
- Suppes, P., & Zanotti, M. (1981). When are probabilistic explanations possible? Synthese, 48, 191-199.
- Wang, Z., Solloway, T., Shiffrin, R. M., & Busemeyer, J. R. (2014). Context effects produced by question orders reveal quantum nature of human judgments. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9431-9436. doi: 10.1073/pnas.1407756111