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A B S T R A C T

How our brain integrates single words into larger linguistic units is a central focus in neurolinguistic studies.
Previous studies mainly explored this topic at the semantic or syntactic level, with few looking at how cortical
activities track word sequences with different levels of semantic correlations. In addition, prior research did not
tease apart the semantic factors from the syntactic ones in the word sequences. The current study addressed these
issues by conducting a speech perception EEG experiment using the frequency-tagging paradigm. Participants (N
= 25, Meanage = 23;4, 16 girls) were asked to listen to different types of sequences and their neural activity was
recorded by EEG. We also constructed a model simulation based on surprisal values of GPT-2. Both the EEG
results and the model prediction show that low-frequency neural activity tracks syntactic information through
semantic mediation. Implications of the findings were discussed in relation to the language processing
mechanism.

1. Introduction

How our brain processes different levels of linguistic units (e.g. syl-
lables, phrases, sentences) is a central focus in neurolinguistic studies.
Many recent studies investigated this phenomenon by looking at the
neural basis of processing the basic two-word constructions, e.g., “the
boy”, “he cried” (Kang et al., 1999; Sinai & Pratt, 2002; Burton et al.,
2009; Herrmann et al., 2012; Tsigka et al., 2014; Schell, et al., 2017;
Maran et al., 2022a, 2022b; Rafferty et al., 2023; Li et al., 2024), because
the two-word paradigm allows for a detailed observation of a compo-
sitional operation that mirrors the nature of combinatory operations
described in theoretical linguistics, and reduces additional processes
needed for the computation of long and complex constructions, thereby
making it ideal for testing a variety of linguistic hypotheses that require
multi-dimensional comparisons (Bemis & Pylkkänen, 2011; Iwabuchi
et al., 2019; Maran et al., 2022a). Adopting neuroimaging methods, the
two-word paradigm studies mainly investigated the processing mecha-
nisms of syntactic phenomena such as categorical and agreement vio-
lations, phrase and wordlist contrasts, noun and verb contrasts, etc.
(Maran et al., 2022a). For example, Event-Related Potential (ERP)
studies revealed that categorical and agreement violations in the two-

word constructions evoke ERP components such as an Early Syntactic
Negativity (ESN) (Hasting & Kotz, 2008), an increased negativity N400
(Münte et al., 1993; Barber & Carreiras, 2003, 2005), a prolonged
negativity lasting until 500 ms (Maran et al., 2022b), and an increased
late positivity at 500 ms (Hasting & Kotz, 2008). Electroencephalog-
raphy/Magnetoencephalography (EEG/MEG) studies found that delta,
alpha and beta oscillations are associated with the syntactic computa-
tions in the two-word constructions (Lu et al., 2022). Functional Mag-
netic Resonance Imaging (fMRI) studies demonstrated that the left
Brodmann Area 44 (BA 44) is involved in categorical analysis
(Herrmann et al., 2012), and the left Inferior Frontal Gyrus (IFG) is
engaged in the processing of syntactic agreement (Carreiras et al., 2010)
and hierarchical phrases (Zaccarella & Friederici, 2015).

Prior ERP studies on two-word constructions mainly focused on
when and what specific components can be evoked during the pro-
cessing of linguistic units, failing to capture how different linguistic
units are dynamically assembled and implemented in the brain. Previous
fMRI studies on two-word constructions enabled us to understand what
cortical regions are involved in the processing of specific linguistic units
without telling us how different linguistic units are dynamically inte-
grated to be finally comprehensible. Prior EEG/MEG research on two-
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word constructions explored the oscillatory dynamics of linguistic units
and revealed the potential of capturing the dynamic process in which
different levels of linguistic units are rapidly and constantly assembled
and integrated in the brain. To build upon previous EEG studies and to
further explore the nature of this dynamic process, the current study
conducted an EEG experiment to explore how neural activity tracks and
integrates different levels of linguistic units in two-word constructions
(i.e., ‘noun + noun’ pairs versus ‘noun + verb’ pairs) using the
frequency-tagging paradigm. Before presenting our study, we briefly
review previous oscillation studies on the processing of different levels
of linguistic units in two-word constructions, particularly focusing on
the processing of ‘noun+ noun’ and ‘noun+ verb’ pairs that are directly
relevant to the current study.

It is widely acknowledged that delta-band (0.5–4 Hz) neural activity
can track different levels of linguistic units, such as syllables (4 Hz, Ding
et al., 2016), words (2 Hz, Jin et al., 2020), and sentences (1 Hz, Bai
et al., 2022; Lu et al., 2022, 2023). Yet, how human brain integrates
lower levels of linguistic units (e.g. syllables) into higher level units (e.g.
phrases) remains controversial. One spectrum of the existing studies
argues that our brain combines words into phrases and sentences by
solely relying on the semantic information of words without recourse to
the syntactic information (Frank & Yang, 2018); whereas the other
spectrum claims that neural activity tracks the syntactic structural in-
formation instead of the semantic properties of words (Ding et al. 2016,
2017). Recent EEG studies seem to provide evidence for the latter point
of view (Martin& Doumas, 2017; Lo, et al., 2022; Lu et al., 2022, 2023).
In these studies, word sequences either with a particular syntactic
structure or with a certain specific semantic correlation were presented
auditorily to the participants to see what neural responses were evoked
while they were processing these sequences. The results showed that the
power evoked in the processing of word sequences with a particular
syntactic structure was significantly stronger than the power evoked in
the processing of word sequences with a specific semantic correlation.
They interpreted the findings as evidence that neural activity tracks the
syntactic structural information instead of the semantic properties of
words.

But we wish to point out that the experimental stimuli used in some
of these prior studies appear to be problematic. Consider Lu et al.
(2022), for example. The study used EEG to track Mandarin-speaking
adults’ neural activity in response to two types of sequences contain-
ing synthesized continuous isochronous disyllabic Mandarin words,
with each sequence consisting of 24 disyllabic words and each word
lasting for 500 ms. One type of sequence was composed of two disyllabic
nouns (noun + noun) from two semantic categories (i.e., living and
nonliving) in an alternating order (e.g. ‘牡蛎茶杯熊猫尺子……’ ‘oyster
teacup panda ruler…’), referred to as the ‘semantic condition’; and the
other type of sequence consisted of a four-syllabic ‘noun + verb’ struc-
ture (e.g. ‘父母回来兔子逃跑……’, ‘parents returned rabbits
escaped…’), referred to as the ‘syntactic condition’. The results showed
that the 1 Hz peak was observed in both the semantic and syntactic
conditions, but the spectral power in the syntactic condition was
significantly stronger than that in the semantic condition, suggesting
that syntactic processing can evoke cortical responses more effectively
than lexical semantic information of single words (Lu et al., 2022). We
wish to note, first, that the semantic correlation between a living and a
nonliving noun in the study was probably too weak to drive a strong
neural response. For example, Quinn and Kinoshita (2008) argued that
words from a broad category had a weaker smantic correlation than
words from a narrower category. Federmeier and Kutas (1999) found
that a weak semantic correlation could predict a weak priming effect on
neural responses. On the basis of these previous findings, we suspect that
the weaker 1 Hz neural response in the semantic condition might be
attributed to the fact that the nouns in the ‘noun+ noun’ pairs were from

two broad categories (i.e., living and nonliving things). Second, the
speech sequences in the syntactic condition contained not only syntactic
structural information but also semantic information, because the noun
and the verb used in the ‘noun+ verb’ pairs were not randomly arranged
but rather had some semantic correlations. Consider the ‘noun + verb’
pair ‘rabbits escaped’, for example. The noun ‘rabbit’ and the verb
‘escaped’ not only form a ‘subject + predicate’ structure, but also
constitute as a semantically sensical pair if we compare them to
nonsensical ‘noun + verb’ pairs like ‘rabbit closed’. The two observa-
tions led us to wonder whether the observed 1 Hz peak was due to the
processing of syntactic information, or semantic information, or the
combination of the two. To address these questions, speech sequences
that can truly tease apart the respective roles of semantic and syntactic
information should be used.

In addition, to verify to what extent different statistical language
models can predict the same neural responses in the EEG experiment, Lu
et al. (2022) used the same EEG stimuli to simulate the corresponding
neural responses using three models, a word2vec-based lexical semantic
model, a word occurrence frequency model, and a bigram probability
model. However, none of the models can fully capture the neural ac-
tivities evoked in the corresponding EEG experiment. First, the
word2vec-based lexical semantic model is a model that captures the
word semantic relations based on vector representation of words in large
text datasets, and in Lu et al. (2022) such a model predicted a significant
1 Hz response to the speech sequences in both the semantic and syntactic
conditions, but a stronger 1 Hz in the semantic condition than in the
syntactic condition, which stands in contrast with the EEG results in Lu
et al. (2022), where a stronger 1 Hz power was detected in the syntactic
condition than in the semantic condition. Such a contrast implies that
the word embedding model that relies purely on semantic information
cannot yield the same results as the EEG experiment. It is possible that
the neural processing of syntactic information involves more complex
mechanisms beyond the semantic information that the word2vec-based
lexical semantic model captured. Second, the word frequency model is a
statistical model that predicts linguistic patterns via the capture of word
frequency information in given texts, and in Lu et al. (2022) such a
model predicted significant 1 Hz peaks in both the semantic and syn-
tactic conditions, but no significant spectrum power differences between
these two conditions, which was also different from the results of the
EEG experiment. Such a difference indicated that language statistical
models that rely purely on the word frequency information cannot lead
to the same result of the EEG experiments, either. The neural processing
of syntactic and semantic information is beyond the word frequency
information captured by the word frequency model. Finally, the bigram
probability model is a model that estimates the probability of a word on
the basis of its immediately preceding word in a given text, and in Lu
et al. (2022) it predicted a significant 1 Hz in the syntactic condition but
no such 1 Hz in the semantic condition, which was very different from
the EEG experiment. Such a difference indicated that the neural pro-
cessing of semantic information is not driven by simple statistical in-
formation. To further explore to what degree the existing language
models can predict the neural responses in the EEG experiment, we
proposed that deep neural network Large Language Models (LLMs)
should be used, because LLMs are built upon the Transformer archi-
tecture, get trained on a great amount of data, and take varied factors (e.
g. word frequency, statistical probability, syntactic and semantic infor-
mation, context, etc.) into account. LLMs are therefore more likely to
predict the same neural responses as in the EEG experiment.

To overcome the problems in Lu et al. (2022), the current study used
speech sequences that can truly tease apart the respective roles of se-
mantic and syntactic information. More specifically, in addition to
including the semantic and syntactic conditions in Lu et al. (2022) for
replication purposes, we designed a new semantic condition and a new
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syntactic condition. The new semantic condition contained speech se-
quences consisting of disyllabic antonymic noun pairs (e.g. ‘真相谎言失
败成功……’ ‘truth lie failure success…’) that had stronger semantic
correlations1 than the living and nonliving noun pairs in Lu et al. (2022).
The new syntactic condition contained speech sequences composed of
random disyllabic ‘noun + verb’ pairs (e.g. ‘窗户沸腾冰雪算帐……’
‘window boiling ice accounting…’) that had no sensical semantic cor-
relations as compared to the ‘noun + verb’ combinations in Lu et al.
(2022). By creating the new semantic condition, we were interested to
see whether the 1 Hz peak could be observed in the new semantic
condition and whether a significant spectral power difference between
the new semantic condition and the replicated semantic condition could
be observed when the semantic correlations between words were
stronger. By creating the new syntactic condition, we sought to inves-
tigate whether the 1 Hz peak could be observed in the new syntactic
condition and whether a significant spectral power difference between
the new syntactic condition and the replicated syntactic condition could
be observed when the ‘subject + predicate’ syntactic information was
maintained but the semantic correlations were weaker.

In addition, we conducted a model simulation by relying on surprisal
values calculated in the Generative Pretrained Transformer-2 (GPT-2)
model that could take word frequency, syntactic, semantic, and context
into consideration, so as to see to what extent the GPT-2 model can
predict the spectral peaks and power differences. To take stock, the
present study aims to better understand how neural activity tracks and
integrates different levels of linguistic units by using a better experi-
mental design and model simulation.

2. Methods

2.1. Participants

Twenty-five Mandarin-speaking 19- to 30-year-old university stu-
dents participated in the experiment (Mage = 23;4, SDage = 3.10, 16 fe-
males). They were all right-handed and had no reported history of
speech, hearing or neurological disorders. The study was approved by
the Ethics Committee of the School of International Studies, Zhejiang
University, SIS2023-04. Written informed consent has been obtained
from each participant.

2.2. Stimuli and design

The research design was based on Lu et al. (2022). The stimuli were
speech sequences constructed by continuous isochronous Mandarin
disyllabic words. Each speech sequence consisted of 24 Mandarin
disyllabic words without any pauses between any two adjacent words.
All the disyllabic words were synthesized independently using iFLYTEK
synthesizer (http://peiyin.xunfei.cn/; Mandarin Chinese, female,
Xiaoying) and were adjusted to the same intensity by Praat. Each
disyllabic word was cut into an isochronous 500 ms, so each speech
sequence lasted for 12 s.

As discussed, four experimental conditions were created (see
Table 1), including a new semantic condition, a new syntactic condition,
and the original semantic and syntactic conditions in Lu et al. (2022),
with each condition containing 30 speech sequences.

In the new semantic condition, the antonym pairs, the disyllabic
words in the speech sequences were antonym pairs (e.g.真话-谎言truth-
lie). Each speech sequence contained 12 non-repetitive antonym pairs
(Nword = 24) that were randomly selected from the total of 120 different
antonym pairs (Nword = 240).

In the new syntactic condition, the NV-nonsensical pairs, the disyl-
labic words in the speech sequences were a ‘noun + verb’ combination
(e.g. ‘大楼-打败’ ‘building-defeat’) in which the noun and the verb had
no sensical semantic correlations. Each speech sequence consisted of 12
NV-nonsensical pairs that were randomly selected from the total of 80
different pairs (Nword = 160).

The living-nonliving pairs and the NV-sensical pairs replicated the
semantic and syntactic conditions in Lu et al. (2022) respectively. We
renamed them for illustration purposes. The living-nonliving pairs
contained speech sequences that were composed of ‘living noun +

nonliving noun’ pairs (e.g. ‘老虎-茶杯’ ‘tiger-teacup’). The living nouns
included animals (Nword = 60) or plants (Nword = 60), and the nonliving
nouns included small manipulable objects (Nword = 60, e.g. ‘茶杯’
‘teacup’) or large manipulable objects (Nword = 60, e.g. ‘操场’ ‘play-
ground’). The living nouns in each sequence were evenly selected either
from the category animals or from plants, and the nonliving nouns were
evenly selected either from the category small manipulable objects or from
large manipulable objects. The NV-sensical pairs contained sequences that
were composed of ‘noun + verb’ combinations that had sensical se-
mantic correlations (e.g. ‘情侣-散步’ ‘spouse-walk’). Each sequence had
12 ‘noun + verb’ pairs that were randomly selected from the total of 80
pairs (Nword = 160).

In addition to the target sequences, seven filler sequences were
constructed for each experimental condition. The filler sequences had
the same composition as the corresponding target sequences in each
condition. The difference between the filler and the target sequences
was that each filler sequence contained two non-adjacent disyllabic
locational prepositions (e.g. ‘北边’ ‘north’, ‘南边’ ‘south’) that were
randomly selected from a pool of 42 locational prepositions. An example
filler sequence in the living-nonliving pairs condition is provided in
Table 2. In addition, we also created eight speech sequences as practice
trials, in which four were from the filler sequences and four from the
target sequences.

As discussed, we further quantified the strength of the semantic

Table 1
Experimental Conditions.

Condition Speech Sequence

antonym pairs N1N2N1N2N1N2N1N2…
真话谎言赢家败者城市乡村白天夜晚……
Truth lie winner loser city country day night…

NV-nonsensical pairs NVNVNVNV…
大海丢失细胞讲课果汁扫地厨房生长……
Sea lose cell teach juice sweep kitchen grow…

living-nonliving
pairs

LNLNLNLN…
蜘蛛剪刀蝙蝠大门草莓话筒莲藕码头……
Spider scissors bat door strawberry microphone lotus
wharf…

NV-sensical pairs N1V2N1V2N1V2N1V2…
牡丹盛开情侣散步小孩哭泣客人离去……
Peony bloom spouse walk kid cry guest leave…

Table 2
An Example Filler Sequence.

Condition Speech Sequence

Filler sequences in the living-nonliving
pairs condition

LNLNLNLN…P1

老虎学校松鼠堤坝东边黄瓜蜡烛西边……
Tiger school squirrel dam east cucumber
candle west …
(24 words in total)

1 P represents the locational prepositions.

1 The semantic correlations between the antonymic noun pairs and between
the noun–verb pairs in the syntactic condition was measured by the values
calculated through the word2vec-based lexical semantic model. Details are
presented in section 2.2.
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correlations of word pairs in the four experimental conditions (i.e. the
antonym pairs, NV-nonsensical pairs, living-nonliving pairs, and NV-
sensical pairs). This process was realized by computing the semantic
similarity2 for each word pair in the four experimental conditions based
on BGE-M3 (Chen, et al., 2024) within the word2vec framework. BGE-
M3 is a model that uses 1024-demensional dense vectors to represent
words. The dataset for training covers 194 languages (Mandarin is also
included), which is sufficient for capturing the semantic relations be-
tween words.

We used cosine similarity as the metric and obtained values of the
semantic similarity for each antonym pair, NV-nonsensical pair, living-
nonliving pair, and NV-sensical pair, and then saved all the values in
one dataset. Applying the Shapiro-Wilk test to the values (shapiro.test
function in R (v4.2.3)), we found that the similarity values in some of the
conditions did not follow normal distribution (e.g. living-nonliving
pairs: W = 0.9897, p = 0.0128). We therefore adopted the Wilcoxon
Rank-Sum Test (wilcox.test function in R, one-sided comparison) to
compare the differences between the antonym pairs and the living-
nonliving pairs, and between the NV-nonsensical pairs and the NV-
sensical pairs. The results showed that the values in the antonym pairs
were significantly higher than the values in the living-nonliving pairs
(Medianantonym pairs = 0.521,3 Medianliving-nonliving pairs = 0.407, W =

36451, p < 0.0001), pointing towards stronger semantic correlations in
the antonym pairs. In addition, the values in the NV-sensical pairs were
also significantly higher than those in the NV-nonsensical pairs
(MedianNV-sensical pairs = 0.542, MedianNV-nonsensical pairs = 0.422, W =

5768.5, p < 0.0001), indicating stronger semantic correlations in the
NV-sensical pairs. Fig. 1 gives the distribution of the cosine similarity
values for the four conditions.

2.3. Experimental procedures

The experiment was programmed using PsychoPy. The participants’
task was to judge whether or not the auditorily presented speech
sequence contained locational prepositions by pressing different keys (i.
e., the participants were asked to press the ‘up’ key if they heard any
locational prepositions and to press the ‘left’ key if they did not hear any
locational prepositions). The entire experimental procedure was divided
into three sessions. (1) The word familiarization session. In this ses-
sion, the synthesized disyllabic words were presented to the participants
both visually and auditorily. When the participants pressed the ‘space’
key, they heard a word and simultaneously saw this word on the com-
puter screen. They could press the ‘up’ key to listen to the word again or
press the ‘down’ key to go to the next word. They were asked to go
through all the words to get familiarized with these words. (2) The
practice session. In this session, there were eight practice speech se-
quences that were evenly divided into two sets. Each set included four
speech sequences, two from the filler sequences and two from the target
sequences. The participants were asked to go through either set of the
sequences, so that they could be familiarized with both the target and
filler sequences. More specifically, they listened to speech sequences
with eyes closed in order to reduce artifacts, and when a speech
sequence ended, they pressed the ‘up’ or the ‘left’ key to judge whether
or not the sequence they just heard contained locational prepositions.
After they made their judgements, the program provided an auditorily
presented ‘correct’ or ‘incorrect’ feedback. (3) The experimental ses-
sion. After the practice session, the participants proceeded to the
experimental session. The experimental session included four blocks (i.
e. one block per condition) and each block lasted for about 10 min. The

participants were presented with the four blocks in random order and
were required to have a rest for at least 3 min between blocks. The task
for the participants in the experimental session was to judge whether or
not the speech sequence they heard contained locational prepositions,
which was exactly the same as what they did in the practice session.

2.4. EEG data recording

EEG data was continuously recorded with a 128-channel system
(NetStation software, Electrical Geodesics, Inc.) at the sampling rate of
1000 Hz (online bandpass filter = 0.3–15 Hz) and referenced to the
vertex (Cz). Twenty electrodes (C3, C4, F3, F4, F7, F8, FP1, FP2, FPZ
(14), FPZ(21), FPZ(15), Fz, O1, O2, P3, P4, P7, P8, T7, T8) in the 10–10
system were selected for the following data preprocessing and analysis
(see Fig. 2). We chose these electrodes based on prior research (Ding
et al.,2018; Lu et al., 2022). The electrodes selected in Ding et al. (2018)
were distributed across the frontal, central and parietal regions of the
brain, and the electrodes chosen in Lu et al. (2022) were primarily
distributed in the frontal and central areas of the brain (i.e. Cz, Fz, FCz,
FC3, and FC4). We followed the two studies and chose twenty electrodes
that were primarily located in the frontal, central, and parietal regions of
the brain. We selected these twenty-electrodes, because we used EGI
devices and these twenty electrodes had relatively fixed positions in
different EGI devices (e.g. 128-channel and 256-channel). The imped-
ance of electrodes was kept below 50kΩ and the pre- and post- experi-
ment impedance of electrodes were checked and saved for each
participant.

2.5. EEG data preprocessing

Raw EEG data saved in NetStation were exported to matlab (version
R2022b) using Fieldtrip (version 20220707) for data analysis. The filler
sequences (i.e., those contain locational prepositions) were excluded in
the data analysis. The sampling rate was down to 20 Hz, as the current
study focused on the 1 Hz and 2 Hz. A linear-phase finite impulse
response (FIR) filter was used to bandpass filter the EEG signal between
0.3 and 2.7 Hz, using the same procedure as in Lu et al. (2022) (− 6 dB
attenuation at the cut-off frequencies, 10-s Hamming window). The
least-squares method (Ding et al., 2017, Lu et al., 2022) was used to
remove the horizontal and vertical EOG artifacts that included 6 elec-
trodes,4 the left and right horizontal ones, the left inferior and superior
ones, and the right inferior and superior ones. The least-squares method
is a mathematical approach used to minimize the difference between
observed data and a model. To remove EOG artifacts, we first recorded
signals from EOG electrodes to measure artifacts (e.g. eye movements)
and then modeled how these artifacts affected the EEG signals. Using the
least-squares method, we calculated and subtracted the influence of the
EOG signals from the EEG data, leaving cleaner EEG signals for analysis.
By using the kurtosis method, we detected bad channels that contained
“spikes” that might distort the data and then corrected them. More
specifically, we first set a threshold value and identified the channels
with kurtosis values higher than the threshold one, and defined these
channels as bad ones. We then corrected these bad channels by centering
the signal (e.g. subtracting the median) and by capping extreme values
to a reasonable range, and we finally updated the data. The data were re-
referenced to the average of the left and right mastoid signals.

2.6. EEG data analysis

2.6.1. Frequency-domain analysis
We adopted the frequency-domain analysis as in Lu et al. (2022). The

2 Note that word semantic similarity here does not simply mean that the
words have similar meanings. Instead, it indicates that the two words have
semantic correlations in some specific context.
3 As the data did not follow normal distribution, we calculated the median

value for the four conditions instead of the mean value.

4 The EGI device has six EOG electrodes: left horizontal (128), right hori-
zontal (125), left inferior (127), right inferior (126), left superior (25), and right
superior (8).
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first 2 s of each speech sequence were removed to avoid onset response,
and thus for each sequence only 10 s were used for analysis. The average
of EEG responses of all speech sequences was transformed into the

frequency domain by applying the Discrete Fourier Transform (DFT)
without the incorporation of any additional smoothing window. The
DFT is a method that transforms time-domain signals into frequency
components, and the result of the DFT is a spectrum of frequencies. In
other words, the DFT decomposes the input signals into different con-
stituent frequencies with each represented by a frequency bin. The DFT
was independently applied to each EEG channel.

The process of the DFT analysis was as follows. First, we defined the
sampling rate, the DFT length and the frequency range. In the current
study, the frequency resolution for the DFT analysis was set at 0.1 Hz
(Δf = 0.1 Hz). As the sampling rate was down to 20 Hz (fs = 20 Hz, see
section 2.5), the DFT length N was 200, which was obtained from
dividing the sampling rate by the frequency resolution (N = fs/Δf).
Namely, 200 samples from the input signals were used to compute the
DFT, which was also the total number of the frequency bins. In addition,
the 20 Hz sampling rate and the frequency resolution together deter-
mined the frequency range, which ranged from 0 Hz to 10 Hz (Nyquist
frequency that was half of the sampling rate), with steps of 0.1 Hz.

Second, the DFT coefficients were computed using the formula in (1).

X[k] =
∑N− 1

n=0
x[n]⋅e− i

2π
N kn (1)

In this formula, x[n] represents the signal value n sample later; i is a
special number defined as the square root of − 1; k is an index to identify
specific frequency bins; X[k] means that for each frequency bin k (where
k = 0, 1, 2, …, 199), the coefficient was X[k].

Third, we computed the response power for each frequency bin using
the formula in (2).

Power[k] = |X[k] |2 (2)

We averaged the neural responses across all channels when analysing
the EEG response power.

Fig. 1. Distribution of the cosine similarity values for the four conditions.

Fig. 2. Distribution of the twenty selected electrodes as marked in red.1 The
picture was adapted based on the EGI 128-Channel Map in the GES Hardware
Technical Manual (Electrical Geodesics, 2007)).
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2.6.2. Statistical analysis
The statistical analysis process was also consistent with Lu et al.

(2022). First, we were interested to see whether there were any signif-
icant 1 Hz and 2 Hz spectral peaks in each experimental condition. We
pinpointed the frequency of a spectral peak f and the two neighboring
frequencies around the target frequency f (i.e. the frequency bin just
below f and that just above f), and then compared the response power at
f with the mean of the response power of these two neighboring fre-
quencies. As the frequency resolution was 0.1 Hz, the two neighboring
frequency bins around 1 Hz were 0.9 Hz and 1.1 Hz, and the two around
2 Hz were 1.9 Hz and 2.1 Hz. We then compared the response power at 1
Hz with the mean of the response power at 0.9 Hz and 1.1 Hz, and that at
2 Hz with the mean of the response power at 1.9 Hz and 2.1 Hz. The
comparison was one-sided using the bias-corrected and accelerated
bootstrap method (BCa bootstrap)5 (Efron& Tibshirani 1994), a method
that can create “virtual” samples through repeatedly drawing random
samples with replacement from the original data and then access the
differences between different datasets.

There were 25 participants, so we obtained 25 response power values
for the 1 Hz condition. We also obtained 25 means of response power
values under the 0.9 Hz and 1.1 Hz conditions. Next, for the 1 Hz con-
dition, we randomly sampled 25 values with replacement from the 25
original response power values to form a new set of 25 response power
values, and we averaged the 25 new response power values, and ob-
tained a mean. We repeated this process 10,000 times and thus obtained
10,000 means and formed a bootstrap distribution. For the [0.9 Hz-1.1
Hz] mean condition, we conducted the same process and formed another
bootstrap distribution. We then conducted a one-sided comparison of
the response power values of the two bootstrap distributions.6 The sig-
nificance level was set at (100A + 1)/10,001 if the data population in
one condition was greater than A% of the data population in the other
condition. The same procedure was applied to the 2 Hz condition and
the [1.9 Hz-2.1 Hz]mean conditions.

In addition, we were also interested to see whether there were any
response power differences between the experimental conditions at 1 Hz
and 2 Hz. Normalized power was used to conduct the comparisons so as
to eliminate potential effects due to individual variations in the exper-
imental conditions. The normalized power was calculated by using the 1
Hz peak response power minus the mean of 0.9 Hz and 1.1 Hz response
power and by using the 2 Hz peak response power minus the mean of
1.9 Hz and 2.1 Hz response power. We compared the normalized power
at 1 Hz and 2 Hz in the antonym-pair condition with that in the living-
nonliving condition, and the normalized power at 1 Hz and 2 Hz in the
NV-sensical condition with that in the NV-nonsensical condition. The
comparison was two-sided using the bias-corrected and accelerated
bootstrap method, too. We resampled all the means 10,000 times with
replacement and conducted paired comparisons. In the two-sided com-
parisons, the significance level was set at (200A + 1)/10,001. In addi-
tion, a false discovery rate (FDR) correction was applied in both the one-
sided and two-sided comparisons.

2.7. Predictions

Since the speech sequences were composed of continuous isochro-
nous Mandarin disyllabic words that alternated periodically at several
levels, neural oscillations were expected to be observed in a specific
frequency band if they could track such periodicity. More specifically, a
1 Hz peak was expected to occur in the antonym pairs and living-

nonliving pairs if neural activity tracks the semantic properties of the
sequences; such a 1 Hz peak might occur in the NV-nonsensical pairs if
neural activity tracks the syntactic information of the sequences; a 1 Hz
peak might appear in the NV-sensical pairs if neural activity tracks the
semantic or/and syntactic information of the sequences. 2 Hz peaks
might be observed in all four conditions if neural activity tracks the
word-level information of the sequences. In addition, we might also
observe a significant power difference between the antonym pairs and
living-nonliving pairs as the semantic correlations were stronger in the
former condition.

2.8. Model simulation

2.8.1. The pretrained language model GPT-2 and surprisal values
We constructed a model simulation using the surprisal values

calculated from the pretrained large language model GPT-2 (Generative
Pre-trained Transformer 2). The GPT-2 we chose is gpt2-chinese-
cluecorpussmall (Zhao et al., 2019), which was built on the architec-
ture of GPT-2 (12-layer transformer blocks, 1.5B parameters) (Radford
et al., 2019) and was trained on a Chinese corpus, CLUE CorpusSmall
(Xu et al., 2020) (exceeding 14 GB in size, containing over 5 billion
tokens), thereby enabling Chinese sequence generation.

Surprisal is a concept in information theory (Shannon, 1948) that is
used to quantify the unexpectedness of an event. In LMMs (e.g. GPT-2),
surprisal is adopted to measure how “unexpected” a token (e.g. word) is
in a given context. If we represent the sequence of words by S = [w1,w2,
⋯,wi− 1], then the GPT-2 model predicts the conditional probability of
the next word wi given the preceding words, represented as P(wi|w1,⋯,

wi− 1), which is determined by the model’s weights that are learned
during pretraining. The formula for the computation of surprisal values
from a language model on a word sequence is given in (3).

Surprisal(wi) = − logP(wi|w1,w2,⋯,wi− 1) (3)

In order to see whether there were any differences between the
distribution of the surprisal values and that of the cosine similarity
values for word pairs in the four conditions, we computed the surprisal
values for each antonym pair, NV-nonsensical pair, living-nonliving
pair, and NV-sensical pair, and conducted the same statistical proced-
ures as we computed the cosine similarities values of word pairs in
section 2.2. The results showed that the median of the surprisal values of
the antonym pairs were significantly lower than that of the living-
nonliving pairs (Medianantonym pairs = 28.8, Medianliving-nonliving pairs =

30.9,W = 15143, p < 0.0001), and the median of the surprisal values of
the NV-sensical pairs were significantly lower than that of the NV-
nonsensical pairs (MedianNV-sensical pairs = 26.9, MedianNV-nonsensical
Pairs = 33.0,W = 389, p < 0.0001). Note that surprisal values represent
uncertainty, so lower surprisal values for word pairs indicate lower
uncertainty in their connections, which might be associated with higher
cosine similarity values. Therefore, these statistical results were
consistent with those of the cosine values in the corresponding condi-
tions. But we wish to note that the distribution of the median of the
surprisal values for the four conditions was slightly different from that of
the median of the 1-cosine similarity values as shown in Fig. 3.7

Fig. 3A indicated that the median of the surprisal values of the living-
nonliving pairs was lower than that of the NV-nonsensical pairs, whereas
Fig. 3B showed that the median of the 1-cosine similarity values of two
types of pairs was in the opposite distribution. The median of the sur-
prisal values and that of the 1-cosine similarity values of the other two
types of pairs (i.e. the antonym pairs and the NV-sensical pairs)

5 “Bias-corrected” and “accelerated” mean that the data was adjusted
through bias-correction and acceleration so as to make it statistically more
precise.
6 We conducted one-sided comparison in order to see whether the 1 Hz

response power was significantly greater than the mean of [0.9Hz-1.1 Hz]
power.

7 When the cosine similarity value of a word pair is low (i.e. semantically less
related to the context), the word pair is likely to be more unexpected and thus
corresponds to a higher surprisal value. We therefore plotted the 1-cosine
similarity values to better capture the similarities and differences in their
distribution.
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exhibited similar distribution.
In addition, as the speech sequences were required to be simulated as

neural pulse sequences, we next computed the surprisal values between
every two immediately adjacent words, treating the immediate previous
one word as the context. For example, the surprisal value of ‘徒弟’
(‘apprentice’) was computed given its immediate preceding word ‘师傅’
(‘master’), which in turn took its immediate preceding word as the
context. This process yielded 23 surprisal values for each word
sequence.

2.8.2. Pulse sequence and neural response waveform simulation
The speech sequences were simulated as neural pulse sequences. We

first prepared the data for the neural response waveform simulation
based on the EEG experimental stimuli. In the EEG experiment, there
were four experimental conditions with each condition containing 30
trials (i.e. word sequences), so there were 120 trials in total. We then
calculated the surprisal values between every two immediate adjacent
words for each trial in each condition and we obtained 23 surprisal
values for each trial (see Table 3). We treated the 23 surprisal values for
each trial as a pulse sequence that can be used for frequency analysis.
The pulse was placed at the onset of each word and its amplitude was
assigned a surprisal value. We further convolved the pulse sequences
with a 500 ms duration Gaussian window to simulate neural responses.
Finally, we conducted a FFT analysis on these simulated responses to see
whether or not the specific spectral peaks (i.e. 1 Hz and 2 Hz) were
observed. Note that the data of the first two seconds of each pulse
sequence were removed from the final analysis, so as to be consistent
with the EEG experiment. We put a zero in the beginning of each pulse
sequence and regarded it as a marker.

3. Results

3.1. The spectral peaks in the four experimental conditions

We adopted the paired one-sided bootstrap method with FDR cor-
rected and observed a significant 1 Hz peak in the antonym pairs
(Fig. 4A, p = 0.0064) and in the living-nonliving pairs (Fig. 4C, p =

0.0418). A significant 1 Hz peak was also detected in the NV-sensical
pairs (Fig. 4D, p = 0.0001), but not in the NV-nonsensical pairs
(Fig. 4B, p = 0.2582). In addition, a significant 2 Hz peak was observed
in all the four conditions (see Fig. 4A-4D, p = 0.0002 for the antonym
pairs, the NV-nonsensical pairs, and the living-nonliving pairs, p =

0.0001 for the NV-sensical pairs), attesting to that low-frequency neural
activity can track every single word information.

We then compared the 1 Hz power differences among the three
conditions that observed a significant 1 Hz peak. By adopting paired
two-sided bootstrap method with FDR corrected, we found significant
power differences between the antonym pairs and the NV-sensical pairs
(Fig. 5A, p = 0.0004), between the living-nonliving pairs and the NV-
sensical pairs (Fig. 5A, p = 0.0002). No significant power difference
was observed between the antonym pairs and the living-nonliving pairs
(Fig. 5A, p = 0.8557). In addition, there was no significant power dif-
ference of 2 Hz peaks between any of the two experimental conditions
(see Fig. 5B).

3.2. The spectral peaks and power of the simulated model

In addition to the EEG responses, we also constructed a model to
simulate how the probability of words contributed to the neural

Fig. 3. Distribution of the median of the surprisal values for the four conditions (A) and that of the median of the 1-cosine similarity values for the four conditions
(B). *** p < 0.001.

Table 3
Simulation of Pulse Sequences.
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responses to the sequences. By adopting the paired one-sided bootstrap
method with FDR correction, we found a 1 Hz peak in the antonym pairs
(Fig. 6A, p = 0.0002), in the NV-nonsensical pairs (Fig. 6B, p = 0.0004),
and in the NV-sensical pairs (Fig. 6D, p = 0.0002), and but not in the

living-nonliving pairs (Fig. 6C, p= 0.6326). In addition, a 2 Hz peak was
observed in all the four conditions (Fig. 6A-6D, all p = 0.0001).

We then compared the power differences between conditions. Since
there was no significant 1 Hz peak in the living-nonliving pairs

Fig. 4. Spectral peaks in different experimental conditions. A. antonym pairs; B. NV-nonsensical. pairs; C. living-nonliving pairs; D. NV-sentence. *** p < 0.001, **p
< 0.01, *p < 0.05.

Fig. 5. Peak values of different experimental conditions. A.1 Hz power; B. 2 Hz power.
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Fig. 6. Spectral peaks in the model. A. antonym pairs; B. NV-nonsensical pairs; C. living-nonliving pairs; D. NV-sentence. *** p < 0.001.

Fig. 7. Peak values of different experimental conditions. A. 1 Hz; B. 2 Hz. 1 We adopted different y scales for Fig. 7A and Fig. 7B because the difference between the 1
Hz response power and the 2 Hz response power was too large, and if we used the same y scale for them, the significant response power differences would be masked
in the 2 Hz condition.
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condition, we only conducted a paired-wise comparison between the
other three conditions. The results showed a significant 1 Hz power
difference between each pair of conditions among the three (Fig. 7A, all
p= 0.0002). In addition, given that significant 2 Hz peaks were observed
in all the four conditions, we then conducted a paired-wise comparison
between the four conditions. The results showed that the 2 Hz power
difference was not significant between the antonym pairs and the living-
nonliving pairs (Fig. 7B, p = 0.7559), but it was significant between any
other two conditions (Fig. 7B, all p = 0.0002).

4. Discussion

4.1. Neural tracking of semantic properties of words in word sequences
with different levels of semantic correlations

The current study explored whether cortical activity can track the
semantic properties of words in word sequences with different levels of
semantic correlations in Mandarin. Previous studies on this topic mainly
focused on semantic features in general, with few looking at how
cortical activities track word sequences with different levels of semantic
correlations. So, the present study is the first of this kind. More specif-
ically, this study investigated whether changing the strength of the
lexical semantic correlations of word sequences would lead to different
spectral peaks and response power differences. Consistent with Lu et al.
(2022), we found a significant 1 Hz peak in the living-nonliving pairs. In
addition, we observed a 1 Hz peak in the antonym pairs. As they were
both semantic conditions, a significant 1 Hz peak indicates that neural
activity tracks the semantic properties of words in Mandarin. In the
antonym pairs, words related to each other in contrast meanings, and in
the living-nonliving pairs, words were co-hyponyms of the same su-
perordinate word, both of which were associative relations that
exhibited the effects of priming in word recognition tasks (Niemi et al.,
1980; Mandler et al., 1990; Perea and Rosa, 2002; Jakić et al., 2011;Was
et al., 2019; Chen et al., 2022). According to Niemi et al. (1980), the
representation of semantic concepts is activated by priming due to
previously attended related materials, and thus increases the availability
of the subsequent item processing, leading cortical activity to track the
semantic correlations between words. In addition, neuroimaging evi-
dence also showed that the processing of antonyms and superordinate
relations evokes stronger cortical responses in specific brain areas than
the processing of unrelated semantic concepts (Jeon, et al., 2009;
Raposo, et al., 2012; Zhuang et al., 2023).

Note that the words in the antonym pairs had stronger lexical se-
mantic correlations than those in the living-nonliving pairs, because the
antonym pairs were conventionalized expressions that had high corre-
lations and “are entrenched in memory and perceived as strongly
coupled pairings by speakers” (Paradis et al., 2009: 386). By contrast,
the words in the living-nonliving pairs covered four different sub-
categories: animals, plants, small manipulatable objects, and large
manipulatable objects. Thus, the combination of these words had much
weaker lexical semantic correlations. The difference in the lexical se-
mantic correlations of words in the two conditions, however, did not
yield any significant power difference. This finding might suggest that
changing the strength of the lexical semantic correlation between words
in the ‘noun+ noun’ pairs might not necessarily cause significant power
difference.

4.2. Neural tracking of syntactic information through semantic mediation

The current study also explored whether cortical activity can track
the syntactic structural information of word sequences with different
levels of semantic correlations. In addition, the semantic factors were
teased apart from the syntactic factors in the word sequences. Most of
the prior research did not tease apart the semantic information from the
syntactic information, and they treated the NV-sensical word pairs
condition as a purely syntactic one. A purely syntactic condition,

however, should be a jabberwocky one where the word sequence is non-
sensical at all, yet perfectly conforms to syntactic rules.8 For example,
Rafferty et al. (2023) designed a jabberwocky condition that was
composed of meaningless two-word phrases (e.g. the moop)12 to see
whether the cortical activity can track the syntactic structure of the
phrase. The results exhibited a significant spectral peak, suggesting that
cortical activity can track syntactic structure information. In the current
study, we sought to investigate the role of semantic properties of word
pairs in mediating the syntactic information of the pairs. In both the NV-
nonsensical pairs and NV-sensical pairs, the nouns and verbs in the se-
quences formed a ‘subject + predicate’ syntactic structure where the
nouns and verbs were either strongly or weakly semantically correlated.
The findings showed no significant 1 Hz peak in the semantically weakly
correlated ‘subject + predicate’ syntactic structure condition (i.e. NV-
nonsensical pairs), indicating that cortical activity in response to that
syntactic structure was reduced so that no 1 Hz peak was detected in that
condition. A significant 1 Hz peak was observed in the semantically
strongly correlated ‘subject + predicate’ syntactic structure condition
only (i.e. NV-sensical pairs), suggesting that cortical activity in response
to that syntactic structure was enhanced so that a significant 1 Hz peak
was observed in that condition. These findings seem to suggest that
syntactic information was tracked through the semantic mediation.

4.3. Model prediction

Different from previous simulations that relied on models based on
simple statistical methods, the current study adopted the LLM GPT-2 to
explore to what extent such a model can predict the same neural re-
sponses that were obtained from the EEG experiment.

4.3.1. Limitations of the model in tracking semantic properties of words in
word sequences with weak semantic correlations

Both the simulated model and the EEG results showed a significant 1
Hz peak in the antonym pairs, indicating that both the simulated model
and our brain’s neural activity can track the semantic properties of
words in word sequences with strong semantic correlations. However,
the simulated model did not show a significant 1 Hz peak in the living-
nonliving pairs, whereas the EEG result showed a significant 1 Hz peak
in that condition, suggesting that our brain can still track the semantic
properties of words though the words in the word sequences were
semantically weakly correlated. This further suggested that our brain
might also utilize memory or other cognitive resources except for the
direct semantic relations betweenwords in order to capture the semantic
correlations of words in word sequences (e.g. Frisby et al., 2023;
Kowialiewski et al., 2023). The model, however, had difficulties in
tracking the semantic properties of words in word sequences with weak
semantic correlations. Such a difference indicated that the model was
not efficient as human brain in the integration of weak semantic re-
lations of words in word sequences.

4.3.2. Limitations of the model in relying too heavily on structural
information

Both the simulated model and the EEG results showed a significant 1
Hz peak in the NV-sensical pairs, indicating that both the simulated
model and our brain can track the syntactic structural information of
word sequences with strong semantic correlations. However, only the
simulated model further showed a significant 1 Hz peak in the NV-
nonsensical pairs, suggesting that the simulated model might rely too
heavily on structural information so that it still predicted a significant 1
Hz peak even when the semantic correlations of the word sequences
were rather weak. In other words, the model would predict a significant
1 Hz peak as long as the structure is ‘subject+ predicate’, indicating that

8 We thank an anonymous reviewer for this idea of ‘jabberwocky’ as a purely
syntactic condition and for pointing out the reference by Rafferty et al. (2023).
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the model was not as flexible as the brain in processing structural in-
formation, especially in integrating syntactic structural information of
word sequences that had weak semantic correlations (e.g. Cai, et al.,
2024).

The simulated model also predicted that the response power of the 1
Hz peak in the NV-sensical pairs was significantly higher than that in the
NV-nonsensical pairs, suggesting that the response power evoked in
tracking such syntactic structure was also mediated by the strength of
the semantic correlations of the word sequences. In addition, the sig-
nificant 2 Hz peaks in all the four conditions in the EEG experiment as
well as in the model prediction indicated that both our brain and the
model were sensitive to the word boundary information.

5. Conclusion

The current study, through a fine-grained design on the linguistic
stimuli, explored how our brain integrates single word information into
larger linguistic units by conducting an EEG experiment using the
frequency-tagging paradigm as well as by constructing a model simu-
lation based on the surprisal values of the pretrained language model
GPT-2. In terms of the neural tracking of semantic information of words,
the EEG results showed that low-frequency neural activity can track the
semantic properties of words, and changing the strength of the semantic
correlations of word sequences did not lead to significant response
power differences. In addition, the EEG results showed that the cortical
activity can also track syntactic structural information, but such a
tracking process was mediated by the strength of the semantic correla-
tions of the word sequences. Compared with the EEG results, the
simulated model based on GPT-2 seems to have limitations in tracking
word sequences that have weak semantic correlations and in relying too
heavily on structural information. Taken together, both the EEG
experiment and the model simulation results suggest that low-frequency
neural activity tracks syntactic information through semantic media-
tion, supporting an integral point of view that cortical activity tracks
syntactic information, but the response power evoked in tracking syn-
tactic information is mediated by semantic information.
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